

Proceedings

 Workshop on
 Interaction between
 Compilers and
 Computer Architectures

 February 3, 2002
 Cambridge, MA

In conjunction with

Eighth International Symposium on

High-performance Computer Architecture (HPCA-8)

The Sixth Annual Workshop on
Interaction between Compilers and

Computer Architectures (INTERACT-6)
February 3, 2001 Cambridge, MA

In conjunction with
8th International Symposium on

High-performance Computer Architecture (HPCA-8)

Sponsored by
IEEE Computer Society

Technical Committee on Computer Architecture

Program Committee

Chair: Gyungho Lee, Iowa State Univ.

David August, Princeton Univ.

Todd Austin, Univ. of Michigan

Doug Burger, Univ. of Texas-Austin

Kemal Ebcioglu, IBM

Antonio Gonzalez, Universitat Politecnica de Catalunya, Spain

Lizy John, Univ. of Texas-Austin

Zhiyuan Li , Purdue Univ.

Eric Rotenberg, North Carolina State Univ.

Andre Seznec, IRISA, France

INTERACT-6: The Sixth Annual Workshop on Interaction between

Compilers and Computers Architectures

Advance Program

I. Instruction Scheduling (9:00 am ~ 10:00pm)
Chair: G. Lee

Compiling for Fine-Grain Concurrency: Planning and Performing Software Thread

Integration
Alexander G. Dean

Department of ECE, North Carolina State University

Dynamically Scheduling VLIW Instructions with Dependency Information
Sunghyun Jee, Chonan College in Foreign Studies

Kannappan Palaniappan, Department of CSCE, University of Missouri – Columbia

- Coffee Break (10:00 ~ 10:30am)

II. Simulation and Profiling (10:30 ~ 12:00am)
Chair: A. Dean

Accuracy of Profile Maintenance in Optimizing Compilers

Youfeng Wu
Microprocessor Research Labs, Intel

Mastering Startup Costs in Assembler-Based Compiled Instruction-Set Simulation

Ronan Amicel, and Francois Bodin
IRISA / INRIA, France

On the Predictability of Program Behavior Using Different Input Data Sets

Wei Chung Hsu, Howard Chen, Pen Chung Yew
Department of Computer Science, University of Minnesota
Dong-Yuan Chen, Microprocessor Research Labs, Intel

- Lunch Break (12:00 ~ 2:00pm)

III. Data Access (2:00 ~ 3:00pm)
Chair: G. Lee

Quantitative Evaluation of the Register Stack Engine and Optimizations for Future

Itanium Processors
R. Dave Weldon, Steven S. Chang, Hong Wang, Gerolf Hoflehner,

Perry Wang, Dan Lavery and John Shen
Microarchitecture Research Labs, Intel

Efficient and Fast Data Allocation of On-chip Dual Memory Banks

Jeonghun Cho, Jinhwan Kim, and Yunheung Paek
Department of EECS, Korea Advanced Institute of Science & Technology

- Coffee Break (3:00 ~ 3:30pm)

IV. Code Size (3:30 ~ 5:00pm)
Chair: W. Hsu

Code Size Efficiency in Global Scheduling for ILP Processors

Huiyang Zhou, and Thomas M. Conte
Department of ECE, North Carolina State University

Code Compression by Register Operand Dependency

Kelvin Lin, Jean Jyh-Jiun Shann, and Chung-Ping Chung
Department of CSIE, National Chiao Tung University

Code Cache Management Schemes for Dynamic Optimizers

Kim Hazelwood, and Michael D. Smith
Division of Engineering and Applied Sciences, Harvard University

Abstract

Embedded systems require control of many con-
current real-time activities, leading to system designs
which feature multiple hardware peripherals with each
providing a specific, dedicated service. These periph-
erals increase system size, cost, weight, power and
design time.Software thread integration (STI) pro-
vides low-cost thread concurrency on general-purpose
processors by automatically interleaving multiple
(potentially real-time) threads of control into one. This
simplifies hardware to software migration (which elim-
inates dedicated hardware) and can help embedded
system designers meet design constraints such as size,
weight, power and cost.

This paper introduces automated methods for
planning and performing the code transformations
needed for integration of functions with more sophisti-
cated control flows than in previous work. We demon-
strate the methods by using Thrint, our post-pass
thread-integrating compiler, to automatically integrate
multiple threads for a sample real-time embedded sys-
tem with fine-grain concurrency. Previous work in
thread integration required users to manually inte-
grate loops; this is now performed automatically. The
sample application generates an NTSC monochrome
video signal (sending out a stream of pixels to a video
DAC) with STI to replace a video refresh controller IC.
Using Thrint reduces integration time from days to
minutes and reclaims up to 99% of the system’s fine-
grain idle time.

1. Introduction

Embedded systems have multiple concurrent
activities which must meet their deadlines or else the
system will fail. These activities are usually imple-
mented in hardware to guarantee they occur on time,

as most microprocessors suffer when trying to perform
multiple threads concurrently at a fine grain while
meeting deadlines. Adding this hardware complicates
system design whether added as external ICs or as
modules on a microcontroller or system-on-chip.
External components increase system size, weight,
power, parts cost and design time. Integrated hardware
peripherals increase design time and also fracture the
chipmaker’s market (which leads to increased cost
through reduced volumes). In the end, both internal
and external hardware solutions increase costs.

1.1 Hardware to Software Migration Challenges

These costs have led to many efforts to implement
the concurrent activities in software in order to ride the
wave of falling compute costs described by Moore’s
law. There are two difficulties with making generic
microprocessors adept at executing multiple concur-
rent threads.

First, the processor must switch easily among con-
texts, saving and restoring registers with each switch.
There are many techniques (register banks and win-
dows, coarse- and fine-grained multithreading, simul-
taneous multithreading, multiprocessing) to allow
quick switches [22][33][31][32][7][30][6]. Some of
these techniques are available in embedded processors,
though not all.

Second, the processor must execute the right
instructions from the right thread at the right time. This
is the crux of the problem. The general solution is to
divide threads into coarse- and fine-grain pieces. Each
coarse piece is made of concatenated fine-grain pieces.
Scheduling the fine-grain pieces is done statically (at
compile time) and involves executing padding instruc-
tions to generate a given time delay. Nops are typically
used. Although some coders have painstakingly man-
aged to inject by hand instructions which perform use-

Compiling for Fine-Grain Concurrency:
Planning and Performing Software Thread Integration

Alexander G. Dean
Center for Embedded Systems Research, Department of Electrical and Computer Engineering

NC State University, Raleigh, NC 27695
alex_dean@ncsu.edu

ful work for another part of the program, the resulting
programs are brittle and difficult to maintain. Further-
more, this approach is very poorly suited to systems
which require frequent real-time activity with fine tim-
ing accuracy .

Despite these difficulties, there is an abundance of
articles and application notes from makers of micro-
controllers describing how to extract concurrency from
their generic processors [3] [4] [13] [14] [19] [20] [23]
[24]. These efforts primarily target two classes of
applications: video signal generators and communica-
tion protocol controllers. This paper is in the first area.
The second area is much more demanding, and we are
currently extending our STI concepts to suppport it.

1.2 HSM with STI

We have developed and continue to enhance our
compiler-based approach to providing fine-grain con-
currency. We have developed a compiler Thrint which
automatically creates an implicitly multithreaded func-
tion from two functions, one with real-time require-
ments on specific instructions. It implements many of
the time-driven code transformations which we devel-
oped for integrating threads while maintaining control,
data and timing correctness. With this technology an
off-the-shelf uniprocessor can efficiently perform mul-
tiple concurrent functions without any special support
for rapid context switching, scheduling or concur-
rency. This in turn makes hardware to software migra-
tion (HSM) viable.

Our past work developed concepts and methods
not only for software thread integration (STI) but also
how to use it for HSM, in which a real-time guest
thread replaces the dedicated hardware and is inte-
grated with one or more host threads from the applica-
tion. We created a practical design procedure based
upon idle time analysis of guest threads (to determine
which threads have enough idle time to be worth inte-
grating), temporal determinism of host threads (to
determine which threads have enough timing deter-
minism to be good frameworks for integration), meth-
ods for recognizing guest trigger events, methods for
dispatching integrated threads, and techniques to pre-
dict overall performance of an integrated system. We
derived methods for measuring the performance of the
integrated software for peak and average cases as well
[9][10][8][12].

In this paper we present the algorithms used to
plan and then perform integration, using previously

developed integration transformations as building
blocks. We use two phases to enable the evaluation of
a variety of integration plans using estimates of MIPS
recovered, guest response latency and code expansion.
This enables the compiler or the designer to select the
best approach for integration. An NTSC video refresh
application is used to demonstrate the automated use
of the integration planning and execution methods pre-
sented here. We use our compiler Thrint for the inte-
gration; it now totals over 10,000 lines of C++ code in
20 modules. We examine an application and use Thrint
to perform the video refresh work, creating efficient
integrated functions.

This paper has the following organization. Section
2 gives an overview of how STI works. Section 3
introduces the planning and transformation algorithms
and data structures used in Thrint. Section 4 examines
the integration of a sample application. Section 5 sum-
marizes the results and their broader implications.

2. Software Thread Integration Overview

Figure 1 presents an overview of how STI is used
for HSM. A hardware function is replaced with soft-
ware written by a programmer. This code consists of
one or more guest threads (represented by the blue bar)
with real-time requirements. When the threads are
scheduled for execution on a sufficiently fast CPU,
gaps will appear in the schedule of guest instructions,
as illustrated by the white gaps in the blue bar. These
gaps are pieces of idle time which can be reclaimed to
perform useful host work. STI recovers fine-grain idle
time efficiently and automatically.

STI uses a control dependence graph (CDG, a
subset of the program dependence graph
[1][15][17][18][26][27][29]]) to represent each proce-
dure in a program. In this hierarchical graph (please
see Figure 2), control dependences such as condition-
als and loops are represented as non-leaf nodes, and
assembly instructions are stored in leaf nodes. Condi-
tional nesting is represented vertically while execution
order is horizontal, so that an in-order left-to-right tra-
versal matches the program’s execution. The CDG is a
good form for holding a program for STI because this
structure simplifies analysis and transformation
through its hierarchy. Program constructs such as
loops and conditionals as well as single basic blocks
are moved efficiently in a coarse-grain fashion, yet the
transformations also provide fine-grain scheduling of
instructions as needed.

Using STI for HSM involves moving guest code
into the correct position within the host code for exe-
cution at the correct time. The first stage in this code
motion is called degenerate integration; the program-
mer manually appends the guest procedure code to the
end of the host procedures. The resulting procedure is
then automatically integrated by moving guest nodes
left in the CDG to locations which correspond to the
target time ranges. A tight target time range may fall
completely within a host node, forcing movement
down into that node or its subgraph. As shown in Fig-
ure 2, we have developed a set of CDG transforma-
tions [10][11][12] which can be applied repeatedly and
hierarchically, enabling code motion into a variety of
nested control structures. For example, moving a sin-
gle guest event node into a host code node requires
splitting the code node (a basic block). This is shown
in the diagram as single event case b. Moving into a
conditional (a predicate) requires guest replication into
each case (single event case c). Moving into a loop
requires loop splitting (single event case d1) or

guarded execution (single event case d2) on a specific
iteration. The transformations also support the integra-
tion of guest loops with host loops. Loop fusion,
guarding and unrolling are used to match the host
loop’s work with the available idle time within one or
more guest iterations. Most of these transformations
are implemented in our thread integrating compiler
Thrint.

STI automatically ensures semantic and timing
correctness with its transformations. The variety of
integration methods and decisions enable the STI tool
to automatically optimize for execution speed or code
size.

All control and data dependences must be
observed to ensure semantic correctness. The CDG
explicitly represents control dependences as graph
structures; STI’s code transformations modify the
graph yet maintain these dependences. These transfor-
mations enable STI to interleave code from different
threads, which is the key to reclaiming idle time effi-
ciently. STI only needs to handle false data depen-
dences when integrating threads; no other data
dependency issues arise because each individual
thread remains in order. Assembly code contains many
false data dependences because of register reuse, so
STI automatically reallocates registers to remove this
constraint and make code motion easier.

All real-time dependences must be observed to
ensure timing correctness. Each RT guest instruction
must be moved to execute within its target time range.
STI automates this process. First the host and guest
threads are statically analyzed for timing behavior
[25][28], with best and worst cases predicted. Hard-
ware and software both conspire to make this a diffi-
cult problem in the general case. However, we focus
on applications without recursion or dynamic function
calls, and processors without superscalar execution,
virtual memory or variable latency instructions. We
assume locked caches or fast on-chip memory and no
pipelining.

For perspective, in 1999 81% of the 5.3 billion
microprocessors sold were four- and eight-bit units
(9% were 16-bit). These MCUs run applications which
are not computationally intensive, and do not need
more parallelism or faster clock rates. Instead they are
constrained by other issues such as functionality, cost,
power dissipation, design time and use of commercial
off-the-shelf products.

Figure 1. Overview of hardware to software migration
with STI. Idle time is statically filled with useful work.

Function in
Hardware

Host
Software

Integrated Host
and Guest

Wasted
Idle Time

Software Thread
Integration Idle Time

Reclaimed

Function in
Guest Software

Figure 2. Summary of Single and Looping Event Code Transformations for STI

b. Best node is code
Split code node and retry

c. Best node is predicate Retry for each condition with
predicate as parent

a. Move node, done

Next iteration
will move node

Future iterations
will copy and

d. Best node is loop node Option 1: Split loop
Code memory overhead

move node

Next iteration
will move node

Option 2: Guard guest in loop
Run-time overhead

Code Transformations

Future iterations
will move node

Find node with
minimum error time

Unacceptable
error time:

b,c,d

Acceptable
error time: a

Host iteration longer than guest iteration idle timea. Unroll Guest
Host

Guest

Host Guest
Perform Integrated Iterations Finish Guest

Iterations
Finish Host
Iterations

a. Unroll Guest

Single Event Integration

Code
Loop
Predicate

Host
Guest
Padding Ovhd.

Key

Generic Guard
Int. Loop Test

Looping Event Integration

Host iteration shorter than guest iteration idle timeb. Unroll Host

Host

Guest

b1. Unroll Host

b2. Guard Guest

Resulting CDGs similar
 to cases above

The fact that microarchitectural features such as
superscalar execution and memory caches complicate
the static timing analysis upon which STI relies is
irrelevant for these applications, as they do not need
the performance proided by these features. In fact,
often these applications cannot afford the additional
cost of such an enhanced processor.

During integration, timing directives (supplied by
the programmer) guide integration. Timing jitter in the
host thread is automatically reduced (using padding
instructions) to meet guest requirements. The CDG’s
structure makes the timing analysis and integration
straightforward.

STI produces code which is more efficient than
context-switching or busy-waiting. The processor
spends fewer cycles performing overhead work. The
price is expanded code memory. STI may duplicate
code, unroll and split loops and add guard instructions.
It may also duplicate both host and guest threads.
Memory may be cheap, but it is not free. The memory
expansion can be reduced by trading off execution
speed or timing accuracy. This flexibility allows the
tailoring of STI transformations to a particular embed-
ded system’s constraints.

3. Planning and Performing Integration

Integration requires several stages of preparation.
Time-critical guest code is identified based upon user
directives, the host code’s execution schedule is pre-
dicted for both best and worst cases, and temporally
deterministic segments within the host are identified as
targets for integration (as described in [11]). Next,
integration planning takes place. Thrint plans the inte-
gration transformations needed to integrate the guest
function with each of the temporally deterministic seg-
ments identified previously. The guest code is then
integrated with one or more of these temporally deter-
ministic segments.

The guest thread consists of nodes (code, loop,
predicate), some of which may have timing require-
ments associated with them (code and loop). These are
sub-thread timing requirements; thread-level timing
requirements are dealt with elsewhere. We use timing
directives to specify the target time (with a user-
defined tolerance) for the start of the node’s execution,
as represented as a delay from the beginning of the
integrated thread’s execution. We call guest nodes with
these timing requirements explicitly specified guests
(or simply explicit guests); the other guest nodes are

called implicit guests. Thread integration must place
the explict guests in the host code based on the timing
directives, while the implicit guests are merely con-
strained to be moved to ensure in-order execution
between the explicit guests.

The integration requirements are defined in a text
file as shown in Figure 3. They are loaded into a data
structure which duplicates the CDG structure of the
explicit guest nodes, as shown in Figure 4.

Each integration directive node holds a pointer to
its explicit guest node, as well as a list of pointers to
the implicit guests which precede and follow the
explicit guest. Currently we limit explicit guests to be
code or loop nodes which are at the first or second
level of the CDG. We have found this to be adequate
for a variety of applications. An implicit guest may be
arbitrary code, provided that it is structured.

At this point integration planning begins, using the
temporally deterministic segments [11] identified else-
where (each of these is a contiguous subgraph of the
host CDG).

PROCEDURE DrawSprite INTO DrawSprite
 TOLERANCE 0

BLOCK Video_Reset_Ptr AT 10
LOOP Video_Loop PERIOD 40 ITERATION_COUNT 128
BLOCK Video_Pix0 INTO_LOOP Video_Loop FIRST_AT 22
BLOCK Video_Pix1 INTO_LOOP Video_Loop FIRST_AT 32
BLOCK Video_Pix2 INTO_LOOP Video_Loop FIRST_AT 42
BLOCK Video_Pix3 INTO_LOOP Video_Loop FIRST_AT 52

 BLOCK Video_End IMPLICIT
END

Figure 3. DrawSprite integration directives file specifies
timing requirements for guest thread components

Figure 4. Initial DrawLine control dependence graph with
integration directives data structure marking explicit guests

Code
Loop
Predicate

Host
Guest

Key

Video Refresh
Loop

Line Draw
Loop

Integration
Directives

The algorithm Plan_Integration (Figure 5) is used
to identify which transformations are needed to inte-
grate the guest code with the host segment.
Plan_Integration creates an integration plan based on
the integration directives data structure created previ-
ously, and then steps through each explicit guest
within it.

Integration for code guest nodes is handled by
calling Find_Hosts (Figure 6). This algorithm identi-
fies which node(s) will be executing during the guest’s
target time range, and determines which transforma-
tions (previously presented in Figure 2) are needed to
ensure that if the guest is placed there, control-flow
and timing requirements are met. This may involve
determining where to split a loop or how many pad-
ding nops to use for balancing a predicate node.Figure
7 shows which target host nodes are identified for the
example presented later in this paper.

Looping guest events require a more sophisticated
approach, which is listed in Figure 5 (an example is
graphically presented in Figure 8). The technique
attempts to perform loop fusion if a guest and host
loop overlap for multiple iterations. The goal of this
loop fusion (as seen in Figure 2) is to match guest loop
idle time with host loop body work through unrolling.

Guarded clean-up loops can be added following
the fused loop body accomodate extra iterations or
unknown loop counts. The portions of loops which do
not overlap are handled differently depending upon

type. Host loops are split to separate the overlapping
and non-overlapping iterations. Guest loops have itera-
tions peeled off, with each explicit guest in the
unrolled iteration integrated as a non-looping guest
node.

Figure 5. Plan Integration finds hosts, planning loop
transformations as needed to fuse loops

IntegrationDirectives::Plan_Integration(host_segment) {
for each explicit guest in integration directives list

if current guest is single guest event
host_segment->get_first_node->find_host for current guest

else // is looping guest event
while guest loop iterations remain

find time covered by these guest iterations
if host loop execution overlap

for each host loop executing during this time (in order)
if guest loop starts first

peel preceding iterations from guest loop
plan integration as multiple non-looping guests

else if host loop starts first
split preceding host loop iterations

if overlap time of host and guest loops is enough
plan to unroll guest or host loop
mark for fusion

 if loop iterations remain
mark for clean-up loop copies

else no host loops during guest loop
peel all loop iterations
plan their integration as multiple non-looping guests

}

Figure 6. Find_Hosts algorithm identifies host nodes and
transformations to ensure guest begins execution within

target_time range

Node::Find_Hosts(target_time, guest_node_integration_plan) {
if this node finishes executing before target_time

call Find_Hosts(target_time) on later sibling
else

plan to pad node if needed to remove unacceptable jitter
if target_time follows padded node

// can execute guest immediately after this node
guest_node_integration_plan->Add_Host(this, AFTER)

else
// descend into this node for better timing accuracy
switch on this node’s type
CODE:

guest_node_integration_plan->Add_Host(this, WITHIN)
PREDICATE:

// descend into condition subgraphs
for each condition

this->Get_First_Child(condition)->Find_Hosts(target_time,
guest_node_integration_plan)

LOOP:
// descend into loop subgraph
if guest_node is not in loop

// plan to split host loop or guard guest within it
this->Find_Hosts_In_Loop(target_time,
guest_node_integration_plan)

else
// Plan_Loop_Integration() has already planned loop
// fusion, so just locate guests in appropriate hosts
// without additional loop transformations
this->Get_First_Child()->Find_Hosts(target_time,
guest_node_integration_plan)

}

Figure 7. Integration plan data structure identifies locations
in host code corresponding to guest target times

Integration
Plan

This completes the planning for integration, allow-
ing the evaluation of interesting evaluation plans to
trade off code memory expansion for increased perfor-
mance. One or more such integration plans may be
selected for actual integration, as described in [12].

Integration, presented in Figure 9, performs pad-
ding, loop splitting, unrolling and other transforma-
tions previously planned and then copies the guest
nodes to the appropriate locations in the host code.
Note that each explicit guest may be assigned multiple

hosts, and each explicit guest may have multiple
implicit guests.

4. STI for Video Application

Our previous work has developed concepts, code
transformations and analytical methods for performing
STI especially for HSM. Previous thread integration
results reflect manually integrated code and a mix of
manual and automatic analysis. In this paper we dem-
onstrate automatic thread integration using our post-
pass compiler Thrint, which implements automatic
thread analysis, visualization, and integration by using
techniques of control- and data-flow analysis, static
timing analysis, code transformations and register real-
location. We first examine the application, then evalu-
ate idle time within the guest thread and temporal
determinacy within the host threads. We then analyze
automatically integrated code for system efficiency
and memory expansion.

4.1 Target System for Hardware to Software
Migration

To demonstrate the benefits of STI for HSM we
use an NTSC video refresh controller application (for
driving a CRT). We replace a video generator chip
with a software version. The processor must generate
an NTSC-compatible monochrome video signal [16],
summarized in Figure 10. Although the beam scans
525 times per frame (in two interlaced passes (fields)
per 33.3 ms frame), only 494 rows are visible and
require video data, corresponding to 75.8% of the pro-
cessor’s time. There are additional features in a video
signal (vertical sync, serration and equalization pulses)
but these can be generated easily with standard meth-
ods (ISRs triggered by an on-chip timer) so we do not
examine them in this work. The video data portion of
the signal is the most demanding, as a pixel of video
data must be generated every 100 ns (for 512 pixels
per row). With a 100 MHz CPU this corresponds to ten
clock cycles per pixel, which is very frequent and
offers little time for context switching or scheduling.

We target a 32 bit scalar RISC processor running
at 100 MHz with on-chip single-cycle memory access
and instruction execution and no virtual memory. The

Figure 8. Diagram showing example of loop integration
planning with fusion, splitting and peeling

Host

Guest

Time

Plan to peel 2
guest itera-
tions and

integrate as
single events

Fuse host
and guest
loops (may

need to unroll
H or G)

Split
host
loop

Split
host
loop

Fuse host
and guest
loops (may

need to unroll
H or G)

Peel host
iterationStraight

code

Iteration of
looping code

Figure 9. Integrate algorithm implements code
transformations planned previously

DeterministicCodeSegment::Integrate(integration_plan) {
for each top_level_guest

if guest is loop
for each host of top-level guest

if current host is loop transform
do loop transformation to prepare for fusion

make guarded copy of guest loop after host loop if needed
cur_guest = top_level_guest’s first child

else
cur_guest = top_level_guest

do
pad previous nodes if needed to cut start time jitter
pad host node if needed to cut host node’s completion time jitter
for each of cur_guest’s hosts cur_host

do any host loop transformations (e.g. splitting)
update cur_host pointer based on previous guests, host
splitting and padding
insert these guest node clones at cur_host:

cur_guest’s previous implicit guest nodes
cur_guest (explicit guest) node
cur_guest’s following implicit guest nodes

advance cur_host
if cur_guest within guest loop

advance to next guest within guest loop
else

cur_guest = NULL
while cur_guest

for each top_level_guest
create and insert fused loop control tests

}

HSync

4.7 µs

Back Porch

6.2 µs
Video Data

51.2 µs

Front Porch

1.5 µs

Figure 10. Video signal timing

processor executes 100 million instructions per sec-
ond. The hardware is structured as shown in Figure 11.

The system is designed to generate a monochrome
512x494 pixel image with eight bits per pixel. A digi-
tal-to-analog converter (DAC) converts the data byte
to an analog voltage for the CRT. Note that this design

can easily be extended to provide color video to a CRT
with RGB inputs by adding two more DACs and a
look-up table (palette) memory.

We assume a periodic interrupt will trigger an ISR
just before the beginning of the video data portion of
each row, and that this ISR examines two queues
which hold data to be used by two functions which
have been integrated with display refresh code. The
queues hold parameters for drawing lines or sprites
and are fed by other functions in the application. The
ISR selects one of the two integrated functions (if data
is present in the queue) or else a dedicated busy-wait
refresh function. The chosen thread then reads video
data from the frame buffer in memory and sends it out
to the CRT through the DACs.

The ISR and the queues are not implemented for
this paper because they are straightforward to imple-
ment and analyze. Instead we focus on the integration
and analysis of the refresh/render threads which are
integrated by the compiler.

4.2 Experimental Method

Our compiler Thrint processes functions compiled
for the Alpha instruction set architecture. Although it
is not representative of most embedded systems, it was
chosen to leverage the compiler PCOM from another
tool suite (Pedigree [26]). The Alpha ISA is a clean
load-store architecture with an ample register set and is
a suitable target for this work. We assume a microar-
chitecture with easily predicted performance: scalar
execution, single-cycle memory system or lockable
cache, a predictable pipeline and no virtual memory.
As explained in the introduction, the bulk of the appli-
cations targeted by this research neither need nor can
afford the high throughputs provided by sophisticated
and complex microarchitectures.

The guest (VidRef) and host functions (DrawLine
[2] and DrawSprite) are written in C++ and used for
initial degenerate integration (the guest function body
is concatenated with the host function body, and auto-
matic variables are copied). The new functions are
compiled with gcc 2.7 with -O1 optimization. Basic
block labels are added to the resulting assembly lan-
guage functions to identify instructions with specific
real-time requirements. The functions are then pro-
cessed by PCOM into CDG-structured assembly lan-
guage. These functions are analyzed and integrated by
Thrint, which creates an output assembler file as well
as visualization support files (e.g. Figure 14). Data
symbol information is added to the assembler file
(after having been deleted during processing) and then
assembled. The object file is linked with an X-win-
dows-based driver program to allow execution-based
verification of program operation. Timing correctness
is verified by static timing analysis in Thrint after all
code transformations have been completed. As the tar-
get machine architecture is highly predictable (com-
pletely predictable pipeline, scalar instruction
execution, single-cycle memory access), timing verifi-
cation through execution or simulation is not per-
formed.

RAMCPUROM

I/O Latch

DAC

CRT

Figure 11. Hardware architecture of system lacks a video
refresh controller

Figure 12. Video data flow overview

Line draw
queue:

endpoints, color

Sprite draw
queue:

sprite ptr, pos.

Application

Frame
Buffer

DrawSprite
_VidRef

Other
rendering
functions

DrawLine
_VidRef

Dedicated
Video

Refresh

Video stream
to DAC

Periodic ISR selects one
of these functions to

refresh display

4.3 Guest Thread

The video signal has events which must occur
within tight time ranges to create a compatible video
signal. As mentioned previously, we assume an inter-
rupt service routine triggered by a programmable timer
generates the signal transitions needed for the horizon-
tal and vertical sync, front and back porches, and
equalization and serration pulses. The video data is
read out of a frame buffer and sent out through an 8 bit
DAC by the previously mentioned VidRef function.
When the software needed to perform these events is
executed by the 100 MHz processor (without any con-
text switching or scheduling overhead considered), the
resulting idle time is distributed as shown in Figure 13.

The idle time in large bubbles (compared with the
overhead of setting up a timer and performing two
context switches (e.g. 30 cycles) is best recovered
through context switching. The idle time in smaller
bubbles is recovered through STI. Figure 13 shows
that over half the processor’s idle time for this video
refresh application is in fine-grain pieces of idle time
(four, seven and eight cycles), making this type of
application a good fit for HSM using STI.

4.4 Host Threads

Figure 14 shows the control structure of DrawLine
after the guest code has been appended and the file
assembled. DrawLine takes two endpoints and a color
code as arguments and scan converts the line into the
frame buffer. Two conditionals (predicates) in the
beginning of the function determine line direction,
then the code determines increment values and finally
a loop sets pixels in the frame buffer. The conditionals
within the loop selectively update x or y counters and
error variables. The guest code consists of pointer ini-

tialization code and then a loop which loads 32-bit
words from memory and sends them out to the video
display one byte at a time.

Figure 15 shows the control structure for Draw-
Sprite with the guest code appended. DrawSprite takes
a pointer to a sprite (a 16x16 pixel array) with a posi-
tion and draws the sprite in the frame buffer. The code
consists of a loop which iterates across sprite rows,
and conditionals within that body which handle vari-
ous position cases of the sprite. The guest code is the
same as for DrawLine.

4.5 Integration Process

The code is prepared for integration by marking
time-sensitive instructions in the guest thread assem-
bly code (called explicit guests) with labels, and then
specifying timing requirements for those basic blocks.
Figure 3 presents the integration directives file used
for integrating DrawSprite. A timing error tolerance of
0 cycles is specified, so Thrint pads away all timing jit-
ter (leading to increased code size). Only explicit

0%

10%

20%

30%

40%

50%

60%

0 100 200 300 400 500
Idle Time Bubble Size

Id
le

 T
im

e
D

is
tr

ib
u

ti
o

n

Figure 13. Idle time in video signal generation software is
mostly fine-grain

Figure 14. Initial DrawLine Control Dependence Graph

Code
Loop
Predicate

Host
Guest

Key

Video Refresh
Loop

Line Draw
Loop

Figure 15. Initial DrawSprite Control Dependence Graph

Video Refresh
Loop

Sprite Draw Loop

guests (nodes with specific timing requirements) need
to be defined in this file; the intervening nodes are
called implicit guests and are automatically handled.
At this point Thrint is run to perform integration.

Figure 16 shows the CDGs of the two integrated
functions. Figure 16.a shows that DrawLine’s host
loop is fused with the video refresh loop, and guest
code is replicated into one host conditional. The loop
control tests are fused with a logical AND to control
loop execution. After the fused loop finishes, a
guarded dedicated guest loop completes any remaining
video refresh work. It is guarded to keep it from run-
ning if there is no more work. Following that loop is a
guarded replica of the host loop to finish drawing long
lines which were not completed in the fused loop.

Figure 16.b shows DrawSprite integrated with
VideoRefresh. The idle time in each iteration of the
guest loop (27 cycles) is not long enough to hold a full
host loop iteration (up to 107 cycles). Thrint unrolls
the guest loop by ceil(107/27) = 4 times to fit the host
within the idle time. Figure 16.c shows that part of the
integrated unrolled loop has been copied into the taken
case of a host predicate (conditional). The three nested
levels of conditionals within DrawSprite lead to signif-
icant expansion because most of the guest code is rep-
licated into these cases. Apart from this difference, the
resulting code is similar in structure to the other exam-
ple, with a dedicated guest clean-up loop followed by a
host clean-up loop.

a. Integrated DrawLine CDG

Figure 16. Integrated CDGs

b. Integrated DrawSprite CDG

c. Detail of unrolled loop in integrated DrawSprite CDG

Fused
loops

Padding to cut
timing jitter

Loop control
test fusion

Guard for guest
clean-up loop

Guard for host
clean-up loop

Host
clean-up

loop

Guest
clean-up

loop

Fused
loops

Host
clean-up

loop

Guest
clean-up

loop

Nested
conditionals lead to

code explosion

Peeled iteration 2

Part of peeled
iteration 3Peeled iteration 1Part of original

loop body

4.6 Code Expansion

 Figure 17 shows how STI affects function size for
the examples used. DrawLine grows by 96% (from
144 to 282 instructions) and DrawSprite grows by
211% (from 341 to 1062 instructions). The bulk of the
code expansion for DrawLine() (57 instructions)
comes from padding to equalize timing variations
among paths and to statically schedule the dedicated
guest clean-up loop. Next are 47 instructions from
splitting the host loop (marked “Replicated Host” in
the graph). The guest requires some replication into
conditionals, adding 18 instructions.

DrawSprite() grows first because its 312-instruc-
tion host loop is split to allow integration with its first
11 iterations. Next, the guest replication adds 206
instructions because the guest loop is unrolled three
times, and much of that code must be replicated into
each path of the three-conditional deep host loop. In
addition, 187 padding instructions are added to stati-
cally schedule the guest code and reduce timing varia-
tions in the host code. Clearly the combination of deep
conditionals and loop unrolling leads to code explo-
sion; it would be logical to examine the DrawSprite
function and replace the conditionals (which allow
sprites to be drawn at positions unaligned with word
boundaries) with computation.

This code expansion only applies to functions
which are integrated. In a typical application there
would only be a few, so the overall impact on code size
would be slight.

4.7 Performance

Using STI to reclaim the idle time within the video
refresh portion enables the system to perform more

useful work such as line or sprite drawing. Figure 18
shows the system behavior as a function of line or
sprite drawing performed per video row. The vertical
axis presents the fraction of CPU time remaining after
performing both video refresh and either line or sprite
drawing. We examine the cases of a discrete video
refresh (with all idle time filled with nops) and the
integrated versions described previously. Performing
the video refresh without line or sprite drawing imme-
diately reduces free time to 18% for both implementa-
tions. However, as graphics work is added, the
integrated version is able to recover idle time to per-
form useful work, raising drawing throughput for lines
by 225% and sprites by 290% (X-axis intercepts).

The initially horizontal slope of the integrated
DrawSprite shows that it recovers all available idle
time. The non-horizontal slope of DrawLine shows
that the overhead of integration consumes a significant
amount of idle time.

5. Conclusions and Current Work

We have developed an automated solution to the
hardware-to-software migration challenge called soft-
ware thread integration. Our compiler Thrint automat-
ically integrates multiple threads into a single
implicitly multithreaded flow of control which exe-
cutes on a standard uniprocessors without special sup-
port for scheduling or fast context switching. We have
also developed design methods for using software
thread integration to perform hardware to software
migration quickly and efficiently.

In this paper we present the data structures and
algorithms needed to plan and perform software thread

Figure 17. Code expansion for integrated threads

0

200

400

600

800

1000

1200

Draw Line Draw Sprite

Fu
nc

tio
n

S
iz

e
(in

st
ru

ct
io

ns
)

. Padding
Loop fusion test
Replicated guest
Replicated host
Register reallocation
Original guest
Original host

0%

5%

10%

15%

20%

25%

30%

35%

0 200 400 600
Pixels Drawn per Video Row Refreshed

C
P

U
 T

im
e

R
em

ai
n

in
g

Discrete Draw Line
Integrated Draw Line
Discrete Draw Sprite
Integrated Draw Sprite

Figure 18. Integrated threads reclaim CPU for useful
work, improving performance

integration, using the transformations developed in
previous work. These methods have been implemented
in our research compiler Thrint. We demonstrate the
results of automatic integration of a sample application
with fine-grain concurrency and analyze the resulting
code expansion.

We use Thrint and STI to replace a video refresh
controller with a software implementation. We reduce
integration time from days to minutes, paying a minor
penalty in memory size while reclaiming large
amounts of idle time.

6. References

[1] V.H. Allan, J. Janardhan, R.M. Lee and M. Srinivas:
Enhanced Region Scheduling on a Program Dependence Graph,
Proceedings of the 25th International Symposium and Workshop
on Microarchitecture (MICRO-25), Portland, OR, Dec. 1-4, 1992
[2] J.E. Bresenham, “Algorithm for Computer Control of a Digi-
tal Plotter.” IBM Systems Journal, 4(1), 1965, pp. 25-30
[3] Tony Breslin, “68HC05K0 Infra-Red Remote Control,"
Motorola Semiconductor Application Note AN463, 1997
[4] Dave Bursky, “Speedy 8-Bit Microcontroller Crafts Virtual
Peripherals," Electronic Design, August 4, 1997
[5] G.J. Chaitin, “Register Allocation & Spilling via Graph Color-
ing," Proceedings of the SIGPLAN ‘82 Symposium on Compiler
Construction, pp. 98-105, June 1982
[6] D. Culler, “Fine-Grain Parallelism with Minimal Hardware
Support: A Compiler-Controlled Threaded Abstract Machine,”
Proc. 4th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, April 1991
[7] Y. Chou, D. Siewiorek, J. Shen. “A Realistic Study on Multi-
threaded Superscalar Processor Design” Europar ‘97, Passau, Ger-
many, August 1997
[8] Alexander G. Dean and Richard R. Grzybowski, “A High-
Temperature Embedded Network Interface using Software Thread
Integration," Second Workshop on Compiler and Architectural
Support for Embedded Systems, Washington, DC, October 1-3
1999
[9] Alexander G. Dean and John Paul Shen, “Hardware to Soft-
ware Migration with Real-Time Thread Integration," Proceedings
of the 24th EUROMICRO Conference, Västerås, Sweden, August
25-27 1998, pp. 243-252.
[10] Alexander G. Dean and John Paul Shen, “Techniques for Soft-
ware Thread Integration in Real-Time Embedded Systems," Pro-
ceedings of the 19th Symposium on Real-Time Systems, Madrid,
Spain December 2-4 1998, pp. 322-333
[11] Alexander G. Dean and John Paul Shen, “System-Level Issues
for Software Thread Integration: Guest Triggering and Host Selec-
tion,” Proceedings of the 20th Symposium on Real-Time Systems,
Scottsdale, Arizona, December 1-3 1999, pp. 234-245
[12] Alexander G. Dean, "Software Thread Integration for Hard-
ware to Software Migration," Doctoral Thesis, Carnegie Mellon
University, Pittsburgh, PA, May 2000
[13] Martin Embacher, “Replacing Dedicated Protocol Controllers
with Code Efficient and Configurable Microcontrollers -- Low
Speed CAN Network Applications," National Semiconductor
Application Note 1048, August 1996

[14] Scott Fink, “Hardware/Software Trade-offs in Microcontrol-
ler-based Systems," Application Note, Microchip Inc., 1997
[15] Jeanne Ferrante, Karl J. Ottenstein and Joe D. Warren: The
Program Dependence Graph and Its Use in Optimization, ACM
Transactions on Programming Languages, July 1987, 9(3):319-
349
[16] B. Grob, Basic Color Television Principles and Servicing,
McGraw Hill, 1975
[17] Rajiv Gupta and Mary Lou Soffa: Region Scheduling, Pro-
ceedings of the Second International Conference on Supercomput-
ing, pp. 141-148, 1987
[18] Rajiv Gupta and Madalene Spezialetti: Busy-Idle Profiles and
Compact Task Graphs: Compile-time Support for Interleaved and
Overlapped Scheduling of Real-Time Tasks, 15th IEEE Real Time
Systems Symposium, pp. 86-96, 1994
[19] Scott George, “HC05 Software-Driven Asynchronous Serial
Communication Techniques Using the MC68HC705J1A," Motor-
ola Semiconductor Application Note AN1240
[20] Thomas F. Herbert, “Integrating a Soft Modem," Embedded
Systems Programming, 12(3), March 1999, pp. 62-74
[21] HD61830/HD61830B LCDC (LCD Timing Controller) Data
Sheet. Hitachi, Inc.
[22] Yasuo Hidaka, Hanpei Koike and Hidehiko Tanaka, “Multiple
Threads in Cyclic Register Windows,” Proceedings of the 20th
International Symposium on Computer Architecture, San Diego,
CA, May 1993
[23] Stephen Holland, “Low-Cost Software Bell-202 Modem,"
Circuit Cellar, June 1999, #107, pp. 12-19
[24] Robert Lacoste, “PIC’Spectrum Audio Spectrum Analyzer,"
Circuit Cellar, September 1998, #98, pp. 24-31
[25] Sharad Malik, Margaret Martonosi and Yau-Tsun Steven Li:
Static Timing Analysis of Embedded Software, ACM Design Auto-
mation Conference, June 1997.
[26] Chris J. Newburn, Derek B. Noonburg and John P. Shen: A
PDG-Based Tool and Its Use in Analyzing Program Control
Dependences, International Conference on Parallel Architectures
and Compilation Techniques, 1994
[27] Chris J. Newburn, Exploiting Multi-Grained Parallelism for
Multiple-Instruction Stream Architectures, Ph.D. Thesis,
CMµART-97-04, Electrical and Computer Engineering Depart-
ment, Carnegie Mellon University, November 1997
[28] P. Puschner and C. Koza: Calculating the maximum execution
time of real-time programs. The Journal of Real-Time Systems,
1(2):160-176, September 1989
[29] Madalene Spezialetti and Rajiv Gupta: Timed Perturbation
Analysis: An Approach for Non-Intrusive Monitoring of Real-
Time Computations, ACM SIGPLAN Workshop on Language,
Compiler, and Tool Support for Real-Time Systems, Orlando, Flor-
ida, June 1994
[30] R. Thekkath and S.J. Eggers, “The Effectiveness of Multiple
Hardware Contexts,” Proc. 6th Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, 1994
[31] Toshiba America Electronic Components, Inc., “Clock
Speeds Double With 20MHz Neuron Chips," Press Release, Sep-
tember 28 1997
[32] Toshiba America Electronic Components, Inc.,
“TMPN3120A20M, TMPN3120A20U Data Sheet," August 1998
[33] Carl A. Waldspurger and William E. Weihl, “Register Reloca-
tion: Flexible Contexts for Multithreading,” Proceedings of the
20th Annual International Symposium on Computer Architecture,
San Diego, CA, May 1993

Abstract
This paper proposes balancing scheduling effort more

evenly between the compiler and the processor, by
introducing dynamically scheduled Very Long Instruction
Word (VLIW) instructions. Dynamically Instruction Scheduled
VLIW (DISVLIW) processor is aimed specifically at
dynamic scheduling VLIW instructions with dependency
information. The DISVLIW processor dynamically schedules
each instruction within long instructions using functional
unit and dynamic scheduler pairs. Every dynamic
scheduler dynamically checks for data dependencies and
resource collisions while scheduling each instruction.
This scheduling is especially effective in applications
containing loops. We simulate the architecture and show
that the DISVLIW processor performs significantly better
than the VLIW processor for a wide range of cache sizes
and across various numerical benchmark applications.

1. Introduction

Recent high performance processors have depended
on Instruction Level Parallelism (ILP) to achieve high
execution speed. ILP processors achieve their high
performance by causing multiple operations to execute in
parallel using a combination of compiler and hardware
techniques. Very Long Instruction Word (VLIW) is one
particular style of processor design that tries to achieve high
levels of ILP by executing long instructions composed of
multiple instructions. The VLIW processor has performance
bottlenecks due to static instruction scheduling and the
unoptimized large object code containing a number of
NOPs (No OPerations) and LNOPs (Long NOPs), where
the LNOP means a long instruction that has only NOPs
[20~22]. Superscalar VLIW (SVLIW) is the improving
style of VLIW processor design that tries to execute object
code constructed by removing all LNOPs from VLIW code
[14,15,21,22]. The SVLIW processor also has a
performance limitation similar to the VLIW processor due
to static scheduling. By making use of powerful features to
generate high-performance code, the IA-64 architecture

allows the compiler to exploit high ILP using Explicit
Parallel Instruction Computing (EPIC) [23,24]. The IA-64
is a statically scheduled processor architecture where the
compiler is responsible for efficiently exploiting the
available ILP and keeps the executions busy [24]. Instead
of the merits, the IA-64 processor has a performance
limitation due to static instruction scheduling. In order to
overcome current performance bottlenecks in modern
architectures, a processor architecture that satisfies the
following criteria is required: (1) balanced scheduling effort
between compile-time and run-time, (2) dynamic instruction
scheduling, and (3) reducing the size of object code.

This paper presents a new ILP processor architecture
called Dynamically Instruction Scheduled VLIW
(DISVLIW) that achieves these goals. The DISVLIW
instruction format is augmented to allow dependent bit
vectors to be placed in the same VLIW word. Dependent
bit vectors are added to the instruction format to enable
synchronization between prior and subsequent instructions.
To schedule instructions dynamically, the DISVLIW
processor uses functional unit and dynamic scheduler pairs.
Every dynamic scheduler decides to issue the next
instruction to the associated functional unit, or to stall the
functional unit due to possible resource collisions or data
dependencies among instructions per every cycle. Such
features can reduce the total number of execution cycles of
the DISVLIW processor better than those of the VLIW or
the SVLIW processor that compulsorily schedules long
instructions. The DISVLIW processor is reminiscent of the
CDC-6600 Scoreboard, an early dynamically scheduled
processor architecture [22]. A different with the CDC-6600
is that the compiler conveys more explicit information for
managing the scoreboard, in the form of the dependence bit
vectors. Besides, even though the superscalar processor is
an effective way of exploiting ILP, this superscalar
processor architecture requires complex devices and the
impact of such complexity on the design cost and clock
cycle time can be severe [20,21]. Consequently, the
superscalar processor will not be evaluated in this paper.

The rest of the paper is organized as follows. Section 2
compares issue slots and instruction pipelines of various
ILP processors, Section 3 introduces the DISVLIW

Dynamically Scheduling VLIW Instructions with Dependency Information

Sunghyun Jee Kannappan Palaniappan
Chonan College in Foreign Studies University of Missouri
Chonan, Chungnam, South Korea Missouri, Columbia, U.S.A.

jees@missouri.edu palani@cecs.missouri.edu

processor architecture and instruction pipeline, in Section
4 we evaluate a performance of the DISVLIW processor,
and conclusion follows in Section 5.

2. Instruction level parallelism

Figure 1 shows issue slots and execution images of the
VLIW, the SVLIW, and the DISVLIW processors. The
processors execute their own object code generated from given
data dependency graph. In the data dependency graph, a node
represents an instruction and a directed edge is annotated with
data dependencies and resource collisions between instructions.
We assume that every processor has three untyped functional
units that can execute any instruction and a long instruction has
three instructions. Figure 1 illustrates issue slots of each
object code using rectangles repeated in the horizontal
direction to represent consecutive clock cycles. Squares
placed vertically in each rectangle represent the per cycle
utilization instruction issue slots, where a rectangle and a
square mean a long instruction and an instruction. An
instruction is executed in the following four stages: F

(Fetch), D (Decode), EX (EXecute), and WB (Write Back).
Figure 1(b-1) shows an execution image for the VLIW

processor to execute VLIW code. The VLIW code contains a
number of LNOPs and NOPs in order to solve data
dependencies and resource collisions between long instructions
as shown in Figure 1(a-1). During execution, the VLIW
processor does not allow the next long instruction to enter into
the execution stage until functional units have finished
executing all instructions within the scheduled long instruction.

Figure 1(b-2) shows an execution image for the
SVLIW processor to execute SVLIW code. The SVLIW
code is constructed by removing all LNOPs from the
VLIW code as shown in Figure 1(b-2).

In order to execute the SVLIW code, the SVLIW
processor schedules the next long instruction after
checking for data dependencies and resource collisions
with the scheduled long instructions in advance. When a
collision occurs, the processor is stalled as indicated by
dash (–) in Figure 1(b-2) until all collisions are resolved.
The SVLIW processor uses the same scheduling strategies
used for the VLIW processor.

I0 #2

I1#1 I2#3

I3#1 I4#2

I5#2

Ia#b : ard instruction with
instruction cycle b

I0 #2

I1#1 I2#3

I3#1 I4#2

I5#2

Ia#b : ard instruction with
instruction cycle b

Clock Cycles

1 2 3 4 5 6 7 8 9 1 2 3 4 1 2

I1I0

I2

I3

I4

I5 I1

I2

I3

I4

I5 I0

I1

I2

I3

I4

I5

ith instructionIi NOP LNOP· · ·

I0

Clock Cycles

1 2 3 4 5 6 7 8 9 1 2 3 4 1 2

I1I0

I2

I3

I4

I5 I1

I2

I3

I4

I5 I0

I1

I2

I3

I4

I5

ith instructionIi NOP LNOP· · ·

I0

Data dependency graph (a-1) VLIW (a-2) SVLIW (a-3) DISVLIW

F D EX WBEX

F D EXWB

F D EX WB

F D EXWB

F D EX WB

F D EX WBEX EX

F D EXWB

F D EXWB

F D EX WB

F D EX WB

F D EX WB

F D EX WB

I0

I1

I2

I3

I4

I5

1 2 3 4 5 6 7 8 9 10 11 12

F D EX WBEX

F D EXWB

F D EXWB

F D - WBEX EX

F D EXWB

F D

F D EXWB

I0

I1

I2

I3

I4

I5

1 2 3 4 5 6 7 8 9 10 11 12

-

EX

- - -

EX- - - WB

F D

- - -

EX WB

F D EX WBEX

F D EX WB

F D

F D

WBEX EX

F D

F D

I0

I1

I2

I3

I4

I5

1 2 3 4 5 6 7 8 9 10

- EX

- EX

Clock Cycles

WB-

EX

- WBEX

WBEX

--

-

-

-

EX

F D EXWB

F D EX WB

F D EXWB

F D EX WB

F D EX WB

F D EXWB

F D EX WB

F D EX WB

F D EX WB

F D EXWB

F D EXWB

F D EXWB

F D EXWB

F D EXWB

F D EXWB

F D EXWBNOP

-

EX

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

F D EXWB

F D EX WB

F D EX WB

NOP

NOP

NOP

EX

-

EX

-

EX

F D EX WBEX

F D EXWB

F D EX WB

F D EXWB

F D EX WB

F D EX WBEX EX

F D EXWB

F D EXWB

F D EX WB

F D EX WB

F D EX WB

F D EX WB

I0

I1

I2

I3

I4

I5

1 2 3 4 5 6 7 8 9 10 11 12

F D EX WBEX

F D EXWB

F D EXWB

F D - WBEX EX

F D EXWB

F D

F D EXWB

I0

I1

I2

I3

I4

I5

1 2 3 4 5 6 7 8 9 10 11 12

-

EX

- - -

EX- - - WB

F D

- - -

EX WB

F D EX WBEX

F D EX WB

F D

F D

WBEX EX

F D

F D

I0

I1

I2

I3

I4

I5

1 2 3 4 5 6 7 8 9 10

- EX

- EX

Clock Cycles

WB-

EX

- WBEX

WBEX

--

-

-

-

EX

F D EXWB

F D EX WB

F D EXWB

F D EX WB

F D EX WB

F D EXWB

F D EX WB

F D EX WB

F D EX WB

F D EXEXWB

F D EXEXWB

F D EXEXWB

F D EXWB

F D EXWB

F D EXWB

F D EXWBNOP

-

EX

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

F D EXWB

F D EX WB

F D EX WB

NOP

NOP

NOP

EX

-

EX

-

EX

(b-1) VLIW (b-2) SVLIW (b-3) DISVLIW

Figure 1. Comparison of issue slots and execution images

Figure 1(b-3) shows an execution image for the
DISVLIW processor proposed in this research. Since
instructions within a long instruction may depend on each
other as shown in Figure 1(a-3), we assume that each
instruction contains dependency information in order to
achieve synchronization. The DISVLIW processor issues
one long instruction per cycle and dynamically executes
each instruction using dependency information. As shown
in the shaded pipelines in Figure 1(b-3), instructions I2, I3,

and I4 are simultaneously executed during the 6th clock
cycle although the instructions are fetched on different
clock cycle. Instructions I2 and I4 are also executed during
the 7th clock cycle at the same time.

This example demonstrates the process by which the
DISVLIW processor can achieve better performance in
comparison to the VLIW or the SVLIW processor. The main
insight is that in the DISVLIW processor each instruction
within a given long instruction is dynamically processed.
Therefore, the DISVLIW processor decreases the waiting
time to process a given set of long instructions in
comparison to other processors.

3. DISVLIW processor architecture

3.1 Long instruction format

To dynamically schedule VLIW instructions, the
DISVLIW instruction format is augmented to allow
dependent information to be placed in the same VLIW
instruction. Dependent information is added to the
instruction format to enable synchronization between
prior and subsequent instructions.

The problem of optimal DISVLIW code generation
can be subdivided into two phases as shown in Figure 2.
In the remainder of this paper we will refer to the first
phase as VLIW instruction generation and to the second
phase as packing; the result of both phases represents the

final DISVLIW code composed of long instructions.
Each long instruction has multiple instructions that may
depend on each other due to data dependencies or
resource collisions.

In the VLIW instruction generation phase, the
compiler first generates VLIW code from given data
dependency graph where each instruction is assigned to a
long instruction as shown in Figure 2. The result is a
sequence of long instructions so that one long instruction
can be executed per clock cycle without violating data
dependences or resource constraints. Empty instruction
slots within a long instruction have to be filled with
NOPs (NOPs are depicted with a white background). In
the packing phase, the compiler constructs DISVLIW
code by removing nearly all LNOPs and NOPs from the
generated VLIW code and by inserting dependency
information to each instruction.

To store the dependency relations between
instructions, each instruction format consists of an
instruction Iij and dependency vector DV, which has pre-
dependency Dpre and post-dependency Dpost. Iij refers to
the jth (j=1,..,N) instruction within the ith (i=1,..,M) long
instruction. Dpre provides information about functional
units executing prior instructions that have dependencies
with Iij. Dpost provides information about functional units
that will execute subsequent instructions that depend on
Iij. Dpre and Dpost are individually composed of a bit
vector that has (N-1) bits, where N equals the number of
functional units. To store the information to a bit vector,
the compiler allocates one bit for every other functional
unit. If Iij depends on a prior instruction Ilk (k<j if
l=i;k=1,..,n if l<i) being executed by functional unit Fk ,

the bit designating Fk in the Dpre is set to 1. Otherwise, it
is set to zero. Although DISVLIW code contains
dependency information composed of many bits, the
processor can still achieve a reduction in object code
size in comparison to the VLIW processor [21]. Figure
2(b) shows the example of DISVLIW code (N=4).

I0
I1

I2I3

I4

I5
I6

I7

I8

I0 I1

I2 I3

I4

I5

I7

I6

I8

I0 I1

I2 I3

I4 I7

I5

I6

I8

I0 I1 I2

I3 I4 I7

I5 I6 I8

Given data dependency graph Long instruction groups VLIW instructions Packing of VLIW instructions

I0
I1

I2I3

I4

I5
I6

I7

I8

I0 I1

I2 I3

I4

I5

I7

I6

I8

I0 I1

I2 I3

I4 I7

I5

I6

I8

I0 I1 I2

I3 I4 I7

I5 I6 I8

Given data dependency graph Long instruction groups VLIW instructions Packing of VLIW instructions

Iij Dv

0 0 0 1
Dpre Dpost

Dpre

Dpost

: Pre -dependency bit vectors

: Post -dependency bit vectors

Instruction slot
1… j … N

11

L
ong

instruction
1..

i
..M

Iij Dv

0 0 0 1
Dpre Dpost

Dpre

Dpost

: Pre -dependency bit vectors

: Post -dependency bit vectors

Instruction slot
1… j … N

11

L
ong

instruction
1..

i
..M

(a) code generation (b) code structure
Figure 2. DISVLIW code generation

3.2 DISVLIW processor implementation

Figure 3 shows the DISVLIW processor architecture. The
DISVLIW processor has FU (Functional Unit) and DS
(Dynamic Scheduler) pairs, a number of IQs (Instruction
Queue) and DCs (Dependency Counter), a register file, an
instruction cache, a data cache, and a BTB (Branch Target
Buffer). IQs are placed in front of each FU. It seems like
instructions within a IQ issue in order, but instructions among
IQs slip with respect to each other, dynamic scheduling allows
instructions in different IQs(i.e. different FUs) are
synchronized by having counters (DC) at each FU. If there are
N FUs, then each FU has a DC composed of N-1 counters, 1
counter for every other FU. Each DC saves Dpost of
executed instructions on the associated FU. Using the DC,
each DS dynamically decides whether to assign the next
instruction to the associated FU, or to stall the FU due to
resource collisions or data dependencies. The processor
also utilizes the BTB structure for branch prediction [6,9].

Every DS checks for data dependencies and resource
collisions among instructions per each cycle using both Dpre

of the next instruction and counter values in the associated
DC. In Figure 4, we assume that the DISVLIW processor
has five pairs of FU and DS. In order to schedule instruction,
Each DS compares Dpre of the next instruction to counter
values in the associated DC per each cycle. If any bit in Dpre

is set to 1, DS checks the counter in the corresponding
location in the DC. If the counter is 0, it means that the
execution of prior dependent instruction hasn’t finished.
That is, d(i) returns zero. Otherwise, the execution of prior
dependent instruction has finished. That is, d(i) returns 1.
After the DS confirms that the execution of all prior
dependent instructions is finished (all of d(i) return 1), the
DS decrements the counter values in corresponding location
in its DC using the set bits in given Dpre. It is necessary to
clear the Dpost of the prior instructions from the DC before
execution. Simultaneously, each DS individually assigns the

next instruction to the associated FU.
As an example of Figure 4, DS0 checks Dpre (1010) of

the next instruction and counter values (1030) in its DC0.
Since counters in corresponding position in DC0 are greater
than 0, DS0 decrements counters in DC0 using set bits in
Dpre. As soon as DC0 turns from (1030) to (0020), then DS0

assigns the next instruction to FU0.

Figure 4. Dynamic scheduler units

3.3 Instruction pipeline algorithm

Each instruction on the DISVLIW processor is
executed in four stages as shown in Figure 3. Each stage
requires one cycle except the execution stage that
requires various execution cycles according to an
instruction type. In the Fetch (F) stage, the fetch unit gets
one long instruction from the instruction cache each clock
cycle and separates it into instructions to store IQs. If IQ
is in the full state, the fetch unit cannot fetch the
following long instruction, which prevents the IQ from
overflowing. In the Decode/Scheduling (D/S) stage, the
decode unit analyzes the next instruction at the head of
each IQ. Every DS simultaneously checks for data
dependencies and resource collisions using both Dpre of
the next instruction and counter values in the its DC. If
there are no data dependencies and resource collisions,

In
st

ru
ct

io
n

C
ac

he

IQ

Fetch

IQ

IQ

Decode&Scheduling

Decode

Schedule

DS

DS

DS

DC

DC

DC

FU

FU

FU

Execute
Write Back

Register file

Data Cache

L
ong

instruction

instructions

Dependency
information

instruction Dependency informationLong instruction

In
st

ru
ct

io
n

C
ac

he

IQ

Fetch

IQ

IQ

Decode&Scheduling

Decode

Schedule

DS

DS

DS

DC

DC

DC

FU

FU

FU

Execute
Write Back

Register file

Data Cache

L
ong

instruction

instructions

Dependency
information

instruction Dependency informationLong instruction

Figure 3. DISVLIW processor architecture

DS0

1 10 0

1 30 0
DC0

C4C1 C2 C3

d(1)
d(2)
d(3)
d(4)

1 00 0

0 11 0
C0

C4C2 C3

d(0)
d(2)
d(3)
d(4)

DS1

FU0

0 00 0

1 00 0
C0 C1 C2 C3

d(0)
d(1)
d(2)
d(3)

DS4

…

…

FU4FU1

Dpre

comparators

· DSi : the ith Dynamic Scheduler · DCi : the ith Dependency Counter
· FUi : the ith Functional Unit · Ci : the ith counter

DC1 DC4

Dpre Dpre

DS0

1 10 0

1 30 0
DC0

C4C1 C2 C3

d(1)
d(2)
d(3)
d(4)

1 00 0

0 11 0
C0

C4C2 C3

d(0)
d(2)
d(3)
d(4)

DS1

FU0

0 00 0

1 00 0
C0 C1 C2 C3

d(0)
d(1)
d(2)
d(3)

DS4

…

…

FU4FU1

Dpre

comparators

· DSi : the ith Dynamic Scheduler · DCi : the ith Dependency Counter
· FUi : the ith Functional Unit · Ci : the ith counter

DC1 DC4

Dpre Dpre

each DS decrements counter values in its DC in order to
clear the Dpost of the prior instructions from its DC and
assigns the next instruction to the associated FU. In the
Execute (EX) stage, every FU executes instruction and
announces to other FUs that its execution will be finished
during the execution of the final cycle. To accomplish
this, the FU increments counters (indicating the FU) in
DCs in corresponding location using set bits in the Dpost.
Thus, every FU achieves synchronization since it
decrements counter values in its DC at D/S stage and
increments it at EX stage. To facilitate this, we designed
the EX stage with the ability to control the D/S stage.
Finally, in the Write Back (WB) stage, the results of the
executed instructions are stored in the register file.

Figure 5 shows execution examples of DISVLIW
code generated from Figure 5(a). FU0 first executes
instruction addu since the Dpre of addu is 00, and
simultaneously increments the first counters (indicating
FU0) in the DC1 and DC2 because the Dpost of addu is 11.
Then, FU1 and FU2 individually check Dpre bits of the next
instruction lwc1 and the counter values in its DC1 and DC2.
If both of them are greater than 0, FU1 and FU2 decrements
the first counter value in its DC1 and DC2 using set bits in
the Dpre. It is necessary to clear the Dpost of the instruction
addu from each DC before the execution of FU1 and FU2.
Then, FU1 and FU2 simultaneously begin the execution of
instructions lwc1.

3.4 Loop performance

The DISVLIW processor can significantly reduce the
execution cycles of applications containing loops since
the processor can simultaneously schedule the
instructions fetched from different iterations in the loop.

Figure 6 shows execution images of the VLIW and
the DISVLIW processors that execute the ith iteration

and the (i+1)th iteration of the loop. We generate
VLIW code of Figure 6(a-2) and DISVLIW code of
Figure 6(a-3) from the MIPS code of Figure 6(a-1).
The MIPS code is to initialize integer array. A long
instruction has three instructions each execution cycle
of which is one cycle except that those of mul are two
cycles. Every instruction is executed in the following
four pipeline stages: F, D, EX, and WB. Figure 6(b)
shows an execution image of the VLIW processor that
executes Figure 6(a-2). The VLIW processor requires
15 cycles to execute two iterations of the loop. Figure
6(c) shows an execution image of the DISVLIW
processor that executes Figure 6(a-3). Intructions addu
and sw are simultaneously executed for the 6th cycle
although the instructions are individually fetched at the
2nd and the 3rd clock cycle. Besides, instructions blt
and lw are simultaneously executed at the 8th cycle
although the instructions are fetched from different
iterations. The DISVLIW processor requires 14 cycles
to execute two iterations of the loop.

From the above observation, we know that the
DISVLIW processor is more effective than the VLIW
processor in applications containing loops. This is
because the DISVLIW processor can simultaneously
schedule instructions fetched from different iterations of
the loop as long as the instructions don’t depend on each
other. Due to this feature, the larger the number of loop
iterations the DISVLIW processor gets reduced
execution cycles in proportion to those, when compared
with the VLIW processor. Although is not shown in the
Figure 6, the DISVLIW processor can reduce fetch
cycles because the DISVLIW processor can
simultaneously fetch a number of instructions that may
depend on each other in a long instruction. The
DISVLIW processor also has relative low cache miss
rates due to its reduced object code [21].

addu

lwc1 lwc1

mul .d sub.d

add.d

(a) data dependency graph

(b) DISVLIW code

00addu 11 10 lwc1 11 10 lwc1 00

10mul.d 10 10 ladd.d 00 01sub.d 00

C
lock

C
ycles

addu

lwc1 lwc1

mul .d sub.d

add.d

(c) Execution steps according to clock cycle

FU 0 FU 1 FU 2

1
2

3
4

D stage

DC 0 DC 1 DC 2

C0 C1C0 C2C1 C2

EX stage

DC 0 DC 1 DC 2

C0 C1C0 C2C1 C2

0 0

0 0 0 0

0 0 0 0

0 0

0 0

0

0

1 1

1

1

10

addu

lwc1 lwc1

mul .d sub.d

add.d

(a) data dependency graph

(b) DISVLIW code

00addu 11 10 lwc1 11 10 lwc1 00

10mul.d 10 10 ladd.d 00 01sub.d 00

C
lock

C
ycles

addu

lwc1 lwc1

mul .d sub.d

add.d

(c) Execution steps according to clock cycle

FU 0 FU 1 FU 2

1
2

3
4

D stage

DC 0 DC 1 DC 2

C0 C1C0 C2C1 C2

EX stage

DC 0 DC 1 DC 2

C0 C1C0 C2C1 C2

0 0

0 0 0 0

0 0 0 0

0 0

0 0

0

0

1 1

1

1

10

· DCi : the ith dependency counter · Ci : the ith counter · FUi : the ith functional unit

Figure 5. Changes of DC according to instruction execution

4. Experiment and analysis

4.1 Simulation system

The performance of the DISVLIW processor was
accurately analyzed using a simulator testbed. Using the
simulator testbed, we measured the total number of execution
cycles for various numerical benchmark applications on the
VLIW, the SVLIW, the DISVLIW processor architectures.

The simulator starts with the MIPS assembler, a
Mipspro C++ compiler using optimization flag –O and
assembly code generation flag –S, generating MIPS R4000
assembly code by compiling a C-language benchmark
applications [17]. Next, the macro expander inputs the MIPS
R4000 assembly code while simultaneously expanding
macros. The Macro expander then passes the assembly code
to each parallelizer. Three parallelizers, each of which is
associated with a unique processor, are designed with the
ability to exploit ILP across basic blocks using compile
techniques such as register renaming, branch prediction,
invariant code motion from loops, common subexpression
elimination, function inlining, and loop unrolling
[6,9,10,11]. Generally, the VLIW’s effectiveness depends on
how good the compiler is: the VLIW processor using a
compiler with higher ILP will produce better performance,
and will get higher cache hit rates because of the reduced
object code size. However, the DISVLIW processor
accomplishes this same goal since it constructs object code

using the VLIW code. In the diagram, VLIWc, VLIWs, and
VLIWDIS correspond to VLIW, SVLIW, and DISVLIW
code, respectively. The parallelizers then use the MIPS code
to generate parallelized code for its processor simulator and
then translate this parallelized code into object code.

For these experiments, processor speedups are
calculated by dividing the total number of execution cycles
of the VLIW processor by the total number of cycles of the
DISVLIW or the SVLIW processor. In the Table 1, the
fixed parameters and the variable parameters are also
shown. Except when stated otherwise, the default values
were used in the simulations.

Table 1. Input parameters

Fixed Parameters

Processor pipeline Four-stage(F,D,EX, WB)
Decoded instruction size 4 bytes

integer instruction latency 1 cycle

Floating point instruction latency 1~32 cycle(depend on instruction)

Data cache size Perfect(no miss penalty)

cache mapping method direct mapped

cache replacement policy LRU(Least Recently Used)

Variable Parameters

Parameter Default Value

A number of integer unit 2

A number of floating-point unit 2

next long instruction miss penalty 4

Instruction cache size 16k bytes

$32: lw $14, 20($sp)
mul $15, $14, 4
addu $24, $sp, 0
addu $25, $15, $24
sw $14, 0($25)
lw $8, 20($sp)
addu $9, $8, 1
sw $9, 20($sp)
blt $9, 5, $32

(a-1)

$32: lw addu lw
mul NOP addu
NOP NOP NOP
add NOP sw
sw NOP NOP
NOP blt NOP

(a-2)

$32: 00 lw00 00addu00 00lw00
00mul10 10addu01 00addu00
00sw00 00NOP00 01sw01
00NOP00 01blt00 00NOP00

(a-3)

EX W BF D

EX W BF D

EX W BF D

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

lw

lw

addu

NOP

mul

NOP
NOP

NOP

NOP

NOP

NOP

NOP

addu

sw

blt

NOP

addu

sw

EXEX W BW BFF DD
EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EXEX

EX W BF D

EX W BF D

EX W BF D

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D

EX W BF D

EX W BF D

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D

EX W BF D

EX W BF D

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D

EX W BF D

EX W BF D

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D

EX W BF D

EX W BF D

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

lw

lw

addu

NOP

mul

NOP
NOP

NOP

NOP

NOP

NOP

NOP

addu

sw

blt

NOP

addu

sw

EX W BFF DD

EXEX W BW BFF DD

EXEX W BW BFF DD

EXEX

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D

EX W BF D

EX W BF D

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D

EX W BF D

EX W BF D

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D

EX W BF D

EX W BF D

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

1
EX W BF D

EX W BF D

EX W BF D

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

lw

lw

addu

addu

mul

addu

EXEX W BW BFF DD

EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EXEX
.. ..

EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EXEX W BW BDD
NOP

sw

sw

..

....
NOP

NOP

blt

EX W BF D EXEX W BW BFF DD

EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

.. ..

EXEX W BW BFF DD

EXEX W BW BFF DD

EXEX W BW BFF DD

lw

lw

addu

addu

mul

addu

EXEX W BW BFF DD

EXEX W BW BFF DD
EXEX W BW BFF DD

EXEX
.. ..

EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

EXEX W BW BFF DD
NOP

sw

sw

..

....
NOP

NOP

blt

EX W BF D EXEX W BW BFF DD

EXEX W BW BFF DD

EX W BF D EXEX W BW BFF DD

.. ..

..
....

..
..

..
..

..

..

..

Clock Cycles

2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14

FF

(a) object code (b) VLIW (c) DISVLIW
Figure 6. Comparison of loop execution

Table 2 provides the benchmark applications and the
proportion of I/F (Integer instructions and Floating-point
instructions) of each benchmark application. These
applications all use double precision.

Table 2. Benchmark applications

Table 3 tabulates the ratios of object code size of the
VLIW to both the SVLIW and DISVLIW processors for
each benchmark. In this experiment, we chose numerical
benchmarks that have a high proportion of floating-point
instructions. This choice was appropriate because the
DISVLIW processor is more effective given dynamic
instruction scheduling and reduced object code size. Even
though VLIWDIS contains many bits of dependency
information, Table 3 indicates that VLIWDIS averages 45%
smaller than VLIWc and is almost the same size as VLIWs.

Table 3. Comparison of object code size

4.2 Experimental results

Figure 7 shows the speedup of the DISVLIW
processor over the VLIW (or the SVLIW) processor
using different scheduling strategies. In order to evaluate
scheduling performance only, we ignore cache effects
such as cache miss rates. We assume that an instruction
cache size is perfect (no miss penalty). In this experiment,
we reduced the number of loop iterations in each
benchmark application to reduce simulation duration.

Figure 7 illustrates that even though we assume a
cache with a zero miss rate, the DISVLIW’s performance
is still 9%-15% higher than that of the VLIW processor
regardless of benchmark application. We have the
DISVLIW’s scheduling strategies to thank for this
speedup. This scheduling decreases the waiting time to

process a set of long instructions when compared to the
VLIW and SVLIW processors. By contrast, the VLIW
and the SVLIW processor can’t execute pending long
instructions until the execution of all instructions in the
previous long instruction finishes. In Figure 7, the
SVLIW processor shows same performance when
compared to the VLIW processor.

Figure 8 illustrates the impact of cache size on
speedups of the DISVLIW processor with respect to both
the SVLIW and VLIW processors. We varied the
instruction cache size from 4k bytes to 32k bytes to
compare performance according to changes in cache size.
The speedups of the DISVLIW and the SVLIW
processors were measured relative to the VLIW processor
regardless of cache size. In this experiment, we also
reduced the number of loop iterations in each benchmark
to reduce simulation duration.

These results indicates that the DISVLIW processor is
faster than the SVLIW processor regardless of both
benchmark applications and cache size. This is due to the
DISVLIW’s unique instruction scheduling strategies.
Another factor is the DISVLIW’s reduced object code size,
which decreases average fetch cycles and also reduces cache
misses, as shown in Table 3. Figure 8 indicates that larger
cache sizes result in smaller speedup differences between the
VLIW and DISVLIW processors. At smaller cache sizes, the
VLIW’s performance is slower due to higher cache miss
rates. Unlike the VLIW, the DISVLIW’s performance is not
as sensitive to cache size due to its smaller object code. But
as cache size increases, performance difference decreases
and the VLIW’s performance approaches that of the
DISVLIW. Yet, even assuming perfect cache, the DISVLIW
is still faster than the VLIW’s.

Overall, the performance of DISVLIW processor is
faster than the VLIW and the SVLIW processors over a
wide range of cache size and across various numerical
benchmark applications. We attribute these performance
gains to the balanced benefits of compile-time and run-
time parallelization, dynamic instruction scheduling, and
size reduction of object code as previously described.

0.90 0.95 1.00 1.05 1.10 1.15 1.20

LIVERMORE

MM

CLINPACK

WHETSTONE

FFT

B
en

ch
m

ar
ks

Speedup

VLIW

VLIW
or VLIW

DIS

c

s

Figure 7. Comparison of speedups for different
scheduling strategies

LIVERMORE

M M

CLINPACK

WHETSTONE

VLIW C VLIW S VLIW DISBenchmarks

1

1

1

1

0.723

0.568

0.673

0.438

0.725

0.591

0.673

0.385

AVERAGE 1 0.557 0.554

1 0.385 0.400FFT

LIVERMORE

M M

CLINPACK

WHETSTONE

VLIW C VLIW S VLIW DISBenchmarks

1

1

1

1

0.723

0.568

0.673

0.438

0.725

0.591

0.673

0.385

AVERAGE 1 0.557 0.554

1 0.385 0.400FFT

Benchmarks

LIVERMORE

CLINPACK

M M

Do loop for various kernel operations

Set of linear algebra subroutine

Matrix Multiply using floating point instructions

Description I/F(%)

65.3/34.7

68.4/31.6

75.7/24.3

WHETSTONE Loop instructions for arithmetic computation 65.6/34.4

FFT Matrix Fourier Transformation 43.3/56.7

Benchmarks

LIVERMORE

CLINPACK

M M

Do loop for various kernel operations

Set of linear algebra subroutine

Matrix Multiply using floating point instructions

Description I/F(%)

65.3/34.7

68.4/31.6

75.7/24.3

WHETSTONE Loop instructions for arithmetic computation 65.6/34.4

FFT Matrix Fourier Transformation 43.3/56.7

5. Conclusion

This paper describes a new ILP processor architecture
referred to as Dynamically Instruction Scheduled VLIW
(DISVLIW). The DISVLIW processor is a hybrid
architecture that has inherited features as ILP exploitation at
compile-time of the VLIW processor and dynamic
scheduling at run-time of the superscalar processor. The
experimental evaluations presented in this paper have shown
that the DISVLIW processor achieves a high speedup over
the VLIW and the SVLIW processors for a wide range of
cache sizes and across various numerical benchmark
applications. These performance gains of the DISVLIW
processor result from dynamic instruction scheduling and
size reduction of object code.

The DISVLIW processor architecture opens several
new avenues of research. Optimization of dependency
information within object code, DISVLIW compilers, and
scalability of functional units in the system are just a few
examples that will be investigated in future work.
Particularly, our research will focus on optimization and
management of the dependency information required in
order to achieve synchronization.

6. References

[1] Ken Sakamura, '21st-century microprocessors,' IEEE
Micro, pp.10~11, July/Aug 2000.

[2] Michael J. Flynn, Computer Architecture, Jones and
Bartlett Publishers, 1995

[3] P. P. Chang, D. M. Lavery, S. A. Mahlhe, W. Y. Chen, and
Wen-Mei. W. Hwu, “The Importance of Prepass Code
Scheduling for Superscalar and Superpipelined Processors,”
IEEE Transactions on Computers, Vol. 44, No. 3, pp. 353~370,
March 1995.

[4] Shyh-Kwei Chen, W. Kent Fuchs, and Wen-Mei W. Hwu,
"An analytical approach to scheduling code for superscalar and
VLIW architectures," Proc. International Conference on Parallel
Processing., pp. I258-I292, 1994.

[5] J. A. Fisher, The VLIW machine: A multiprocessor for
compiling scientific code, IEEE Transactions on Computers, pp.
45~53, July 1984.

[6] Barry Fagin, "Partial Resolution in Branch Target Buffers'"
IEEE Computers, Vol. 46, No. 10, October 1997

[7] Joseph A. Fisher, "Trace Scheduling: A Technique for
Global Microcode Compaction," IEEE Transactions on
Computers., Vol. C-30, No. 7, pp. 478~490, July 1981.

[8] Roger Espasa and Mateo Valero, "Exploiting instruction-
and data-level parallelism," IEEE Micro, Vol. 17, No. 5, Sept
1997.

[9] S. A. Mahlke, R. E. Hank, J. E. M. McCormick, D. I.
August, and W. W. Hwu, “A Comparison of Full and Partial
Predicated Execution Support for ILP Processors,” Proceedings
of the 22th international Symposium on Computer Architectures,
pp. 138~150, 1995.

[10] ThomasM. Conte and Sumedh W. Sathaye, "Dynamic Rescheduling:
A technique for object code compatibility in VLIW architecture,"
Proceedings of 28th International Symposium on Microarchitecture,
March 1995.

[11] Arthur Abnous and Nader Bagherzadeh, "Pipelining and
bypassing in a VLIW processor," Transactions on Parallel and
Distributed Systems, Vol. 5, No. 6, pp. 658~664, June 1994.

0.8 0.9 1.0 1.1 1.2 1.3 1.4

S peedup

4k

8k

16k

32k

C
ac

he
Si

ze

0.8 0.9 1.0 1.1 1.2

4k

8k

16k

32k

(a) LIVERMMORE (b) MM

0.8 0.9 1.0 1.1 1.2

4k

8k

16k

32k

0.8 0.9 1.0 1.1 1.2 1.3

4k

8k

16k

32k

(c) CLINPACK (d) WHETSTONE

0.8 0.9 1.0 1.1 1.2 1.3 1.4

4k

8k

16k

32k VLIW

VLIW

VLIW

DIS

S

C

(e) FFT

Figure 8. Comparison of the speedups according
to changes in cache sizes

[12] T. M. Conte and S. W. Sathaye, “Dynamic rescheduling; a
technique for object code compatibility in VLIW architecture,”
proceedings of the 28th Annual International Symposium on Micro
architecture, pp. 208~218, March 1995.

[13] Kevin W. Rudd and Michael J. Flynn, "Instruction-level parallel
processors-dynamic and static scheduling tradeoffs," Proc. The
Second AIZU International Symposium on Parallel Algorithms/
Architecture Synthesis., pp. 74~80, March 1997.

[14] Shusuke Okamoto and Masahiro Sowa, "Hybrid processor based
on VLIW and PN-Superscalar," Proc. DPTA'96 International
Conference., pp. 623~632, 1996.

[15] Sunghyun Jee and Sukil Kim, "Performance analysis of
caching instructions on SVLIW processor and VLIW processor,"
Journal IEEE Korea Council, Vol. 1, No. 1, December 1997.

[16] Susan J. Eggers, Joel S. Emer, Henry M. Levy, and Jack L.
Lo, "Simultaneous multithreading," IEEE Micro, Vol. 17, No. 5,
Sep 1997.

[17] MIPS R4000 Microprocessor User's Manual, MIPS
Computer Systems, Inc., 1991.

[18] B. R. Rau, “Dynamically scheduled VLIW processors,”
Proceedings the 26th Annual International Symposium on
Microarchitecture, pp. 138~148, Mach 1997.

[19] T. Hara and H. Ando, “Performance comparison of ILP machines
with cycle time evaluation,” Proceedings of the 23rd Annual
International Symposium on Computer Architecture, pp.
213~224, Mach 1996.

[20] A. F. de Souza and P. Rounce, “Dynamically Scheduling
VLIW instructions,” Journal of Parallel and Distributed
Computing, pp. 1480~1511, 2000.

[21] Sunghyun Jee and Sukil Kim,” A Design of A Processor
Architecture for Codes With Explicit data Dependencies,”
Proc. tenth SIAM Conference on Parallel Processing for
Scientific Computing 2001, March 2001.

[22] Patterson D. A., and J. L Hennessy, Computer Architecture
A Quantitive Approach 2nd edition, Morgan Kaufmann, pp.
240~261, 1996.

[23] Intel, http://www.intel.com/ia64, IA-64 Architecture Software
Developer’s Manual, Volume 1:IA-64 Application Architecture,
Revision 1.1, July 2000.

[24] Intel, http://www.intel.com/ia64, Itanium Processor
Michroarchitecture Reference for Software Optimization, Aug.
2000.

Accuracy of Profile Maintenance in Optimizing Compilers

Youfeng Wu
Programming Systems Research Lab

Intel Corporation
2200 Mission College Blvd

Santa Clara, CA 95052
youfeng.wu@intel.com

Abstract

Modern processors rely heavily on optimizing
compilers to deliver their performance potentials. The
compilers on the other hand rely greatly on profile
information to focus the optimization efforts and to better
match the generated code with the target machines.
Maintaining the profile in optimizing compiler is
important as many optimizations can benefit from the
profile information and they often are performed one after
the other. Maintaining a profile is however tedious and
error-prone. Erroneous profile is not easy to detect as it
affects only the performance, not the correctness, of a
program. Maintaining a profile also inherently loses
accuracy, as the profile update operations often have to
use probabilistic approximation. In this paper, we
measure the accuracy of maintaining CFG profiles in a
high-performance optimizing compiler. Our data
indicates that the compiler maintains the profile more
accurately within individual functions than globally
across functions, and function inlining may be responsible
for the loss of profile accuracy globally. We also identify
a list of important research issues related to profile
maintenance.

1. Introduction
Modern processors rely heavily on optimizing

compilers to deliver their performance potentials. The
compilers on the other hand rely greatly on profile
information to focus the optimization efforts and to better
match the generated code with the target machines [4] [5]
[7] [12] [20]. A profile about a program is a relative
ranking of the components in the program, collected from
previous runs of the same program. The most widely
used profile is the control flow profile [1] [2] (referred to
as the CFG profile in this paper). A CFG profile provides
the compilers with the execution frequency and the
branch probabilities for each basic block in the control
flow graph. This profile is easy to obtain and provides
significant performance boost to optimizing compilers. A
recent study [14] shows that CFG-profile guided code

layout can improve OLTP performance by 33% on Alpha
systems. Our experience indicates that using CFG profile
information can lift the performance of the CPU2000
integer suite on Itanium systems [9] significantly.

Maintaining a profile during compilation is
important. Many optimizations can benefit from the
profile information and they often are performed one after
the other. During an early optimization, the control flow
may change and a reasonably well-maintained profile
must be presented to the late optimizations. We could
avoid the maintenance issue by recollecting the profile
after each optimization. However, profiling a program
multiple times imposes huge burden on the productivity
and is often impractical.

Maintaining a profile during compilation is however
tedious and error-prone. For any transformation that may
modify the control flow, additional code must be added to
update the profile information. Any omission in the
profile maintenance may lead to erroneous profile
information later. Erroneous profile information is not
easy to detect as it affects only the performance, not the
correctness, of a program. For example, a programmer,
who may be under time pressure to fix a correctness bug,
could easily forget adding the profile maintenance
operations related to the bug fixes. One of the benefits of
this study is to automatically detect the profile
deterioration, and provides hints on where the accuracy
loss occurs (e.g. which functions lose profile accuracy
most seriously).

Maintaining a profile during compilation also
inherently loses accuracy. When the program control
flow graph changes, there is often not enough information
to update profile information precisely. The most
commonly used method is to use probabilistic
approximation. Namely, the branch probabilities of the
new blocks are assumed to be the same or closely related
to the branch probabilities of the corresponding old
blocks. For example, Figure 1 shows the profile
maintenance for a code replication optimization. The
block frequency is shown to the right of each block, and
the branch probability is marked on the branching edge.
When blocks c, d and e in Figure 1 (a) are replicated, the

new blocks c’, d’, and e’ need to be assigned block
frequencies and branch probabilities. Under the
assumption that the block c’ has the same branch
probability as the old block c, the block frequencies can
be assigned as shown in Figure 1 (b). The updated profile
could be different from the actual execution, however, as
the situation in Figure 2 could occur when the duplicated
code is executed. In this case, the branch probabilities of
block c’ are .6 and .4, different from those of the original
block c (.3 and .7).

ba

c

d e

50 50

100

30 70

 100

.3 .7

(a) Before code replication

ba

c

d e

50 50

50

15 35

c’ 50

e’ e’15 35

 100

.3 .7 .3 .7

(b) After code replication

Figure 1. Maintaining the Profile during
Code Replication

To our knowledge, there is no previous study of the

profile maintenance issue in literature. As the modern
processors increasingly rely on profile information to
deliver performance, understanding the accuracy of
profile maintenance becomes important. In this paper, we
measure the accuracy of maintaining a CFG profile in a
research compiler for the Itanium Processor Family (IPF).
The compiler is based on a production high-performance
optimizing compiler with additional components to make
compiler and architectural exploration easier. Our results

indicate that the compiler maintains profiles more
accurately within individual functions than globally
across functions. We also identify a list of important
research issues related to profile maintenance.

The rest of the paper is organized as follows. Section
2 discusses the approaches for profile maintenance.
Section 3 outlines a few optimizations and how they
maintain CFG profiles. Section 4 describes the
methodology for measuring the profile accuracy. Section
5 provides the experimental results. Section 6 concludes
the paper and discusses the future directions.

ba

c

d e

50 50

50

0 50

c’ 50

e’ e’30 20

100

0 1 .6 .4

Figure 2. A Possible Execution Situation
Different from the Maintained Profile

2. Approaches for profile maintenance
When an optimization changes a program control

flow graph, the program’s profile needs to be maintained
for the subsequent optimizations. The maintained
profile must satisfy the rule of flow conservation.
Namely, for every basic block in the control flow graph,
the total frequency on its incoming edges is the same as
the total frequency on its outgoing edges. The frequency
of the block is the same as its total incoming frequency or
its total outgoing frequency. The frequency for a control
flow edge is the product of the frequency of its source
block multiplied by the branching probability along the
edge.

Occasionally, using the rule of flow conservation
alone can uniquely update the block frequencies for a
simple optimization, as shown in Figure 3. In general,
however, there are many ways to maintain a profile by
following the rule of flow conservation. For examples,
the profile maintenances in Figure 1 (b) and Figure 2 both
follow this rule, although the updated profile in Figure 1

(b) is preferred, as it is more likely to happen in actual
execution.

In order to obtain the more likely maintained profile,
the profile maintenance should try to derive the branch
probabilities for the updated blocks from those for the
corresponding blocks in the original control flow graph.
We call this rule the probabilistic approximation. The
profile maintenance in Figure 1 (b) follows the
probabilistic approximation by assuming the block c’
having the same branch probability as block c, while that
in Figure 2 does not. In cases when the branch
probabilities for the new blocks cannot be the same as the
original blocks, there are often simple heuristics to
determine the new branch probabilities from the original
branch probabilities. As long as a branch probability
assignment can be determined for the updated control
flow graph, a unique maintained profile can be obtained
following the rule of flow conservation. Maintaining a
profile using the two rules tends to change the profile
slowly and provides a reasonably good profile for late
optimizations.

ba

c

d

50 50

50

100

c’50

b

c

d

a 50 50

100

100

1.0 1.0

1.0

1.0 1.0

1.0 1.0

Figure 3. Frequencies for c and c’ can be

uniquely determined by rule of flow conservation

The above two rules suggest the following two-step

profile maintain procedure.
1. Use probabilistic approximation to assign branch

probabilities to the updated basic blocks.
2. Propagate block frequencies following the rule

of flow conservation.
The first step is usually straightforward. The branch

probabilities for a new basic block are either the same as
those for the original basic block, or slightly modified
from those of the original basic block. Optimizations that
may require modified branch probabilities from the
original basic block including the following:

Branch reversal optimization: need to change the
branch probability from p to 1-p

Counted loop unrolling: need to change loop exit
probability from p to p*unrolling_factor.

Once the branch probabilities are assigned, the
second step can be performed using the frequency
propagation procedure in [19] (i.e. the Algorithm 2 in
[19]). The algorithm takes the frequency of function
entry block (or a region entry block) and branch
probabilities for the blocks in the function (or a region) as
input, and determines the frequencies for every basic
block in the function (or region). The resulting block
frequencies conform to the rule of flow conservation and
also are consistent with the branch probability
assignment.

The second step can be performed either globally or
incrementally, depending on the optimizations. If an
optimization does not use the profile information in the
modified control flow graph, a global application of the
frequency propagation algorithm can be applied to the
entire function. If an optimization repeatedly transforms
a region of code and requires the profile information for
the modified region of code be up to date, the
optimization needs to propagate block frequencies
incrementally after optimizing each region of code. Our
compiler uses the incremental approach to maintain
profiles for most optimizations.

3. Optimizations and profile maintenance
In this section, we outline a partial list of

optimizations in our compiler that uses and maintains the
CFG profile. The following optimizations change control
flow graph and need to maintain the CFG profile after
using it.

Function inlining: replace a function call with the
function body to enlarge optimization scope and eliminate
call overhead. This optimization is often applied to call
that is frequently invoked [6].

Function cloning: specialize a function with the
constant parameters from a specific call site. This
optimization is often applied to a function call with
constant parameters and high execution frequency [17].

Loop unrolling: replicate a loop body multiple times
to enlarge loop body and enable other optimizations, such
as software pipelining and instruction scheduling. This
optimization is often applied to loops with high trip count.
The trip count can be obtained from the frequencies of the
loop pre-head block and the loop entry block [15][11].

Loop peeling: peel a few iterations from a loop so the
peeled code can be optimized with the surrounding code.
This optimization is often applied to an inner loop with a
low trip count [8].

Tail duplication: duplicate a control flow subgraph to
remove infrequent side entries to a code region [8].

Switch optimization: convert a switch statement
implemented with an indirect branch to a series of direct
branches. This optimization is often applied when the

indirect branch has a few targets that are taken much more
frequently than the other targets.

Branch optimization: combine or remove constant
conditions to short circuit branch chains [16].

Code placement: arrange code so that instruction
flow is only infrequently interrupted. It places blocks that
are frequently executed following each other together in
the generated code [13]. This optimization may reverse
the branch directions for a basic block and may change
the branch probabilities.

The following optimizations benefit from the CFG
profile and usually do not change control flow so need not
to maintain the CFG profile.

Loop invariant code hoisting: hoist operations that
are invariant inside the loop body to the loop pre-head
block. This optimization is often applied when the
invariant operations are executed more frequently than the
loop pre-head block.

Instruction scheduling: arrange instructions to match
machine resource so to minimize the execution time. The
block frequency information allows the scheduler to focus
on the most important traces, possibly sacrificing less
frequent code. The frequency information is also crucial
for control and data speculation [9][3].

Register allocation: allocate physical registers to
program variables. Block frequency information allows
the register allocator to reduce register spill overhead
[10].

In the rest of the section, we discuss in slightly more
detail the function inlining and the loop unrolling
optimizations and show how they use and maintain CFG
profile.

3.1. Function inlining
Function inlining is a sequence of decisions to inline

a selected set of calls to maximize overall performance of
the program. One of the decision criteria to inline a call is
that the call is invoked in a block with high frequency.
After a function g is inlined into a function f, the function
g will no longer be called from the call site. Thus, the
frequencies of the blocks in function g must be reduced to
reflect the fact that the function will be called less often
after the inlining. In addition, the inlined copy of the
function g inside function f must be assigned block
frequencies and branch probabilities. In essence, function
inlining is a special case of code replication: the function
body is replicated into the caller function. The profile can
be maintained as follows.

Assume the entry block frequency of function g is
F1, and the frequency of the basic block of the call site is
F2. For each block b1 in g and the corresponding block
b1’ in the inlined copy of g, the frequency maintenance is
performed as follows:

old_freq = freq(b1)
freq(b1’) = old_freq * F2/F1
freq(b1) = old_freq –freq(b1’)

call g 10

f

a

d

b c

g

40

16 24

40

.4 .6

((aa)) BBeeffoorree iinnlliinniinngg

 f

a

d

b c

g

30

12 18

30

a'

d'

b' c'

10

4 6

10

.4 .6

.4 .6

((bb)) AAfftteerr iinnlliinniinngg

Figure 4. Maintaining a profile for function
inlining

Look at the example shown in Figure 4. F1 = 40 and
F2 = 10. The frequencies for the blocks of g inlined into f
are computed as follows:

freq(a') = 40 * 10/40 = 10;
freq(b') = 16 * 10/40 = 4;
freq(c') = 24 * 10/40 = 6;
freq(d') = 40 * 10/40 = 10.

The frequencies for the blocks inside function g are
updated as follows:

freq(a) = 40 - freq(a') = 30;
freq(b) = 16 - freq(b') = 12;
freq(c) = 24 - freq(c') = 18;
freq(d) = 40 - freq(d') = 30.

The operations above assume that each block in the

inlined copy has the same branch probabilities as the
corresponding block in the function before inlining. This
clearly can result in loss of profile accuracy. For
example, different calls may exercise different portions of
a function during the actual execution. Even if the same
portion of a function is executed for different calls, the
execution may have significantly different branch
probabilities.

3.2. Loop unrolling
Loop unrolling replaces the loop body by multiple

copies of the original loop body. The number of copies is
usually referred to as the unrolling factor. The unrolling
factor can be determined using the block frequencies
information. For example, one of our methods determines
the unrolling factor from the trip count of the loop. The
trip count of the loop is computed as follows.

Trip_count =

block) pre_head freq(loop
block)entry freq(loop

When a counted loop is unrolled, the unrolled loop

body will not have an early exit. The block frequency can
be maintained by dividing the frequency of each block in
the original loop body by the unrolling factor, as shown in
Figure 5 (a) and (b), where a1 and a2 are copies of block
a. Notice that, in this case, the new block a1 has a branch
probability of 1.0 to a2, which is different from the branch
probability of the original block a branching to itself
(0.9). Also, the loop exit probability is increased by the
unrolling factor as the number of times the back edge is
taken is reduced by the unrolling factor.

For a while loop (or a do-while loop), the unrolled
loop body contains early exits. The blocks in the early
copies of the original loop body in the unrolled loop body
should have higher frequency than the corresponding
blocks in the later copies. Following the rule of
probabilistic approximation, we may assumes that the
exits in the unrolled loop body all have the same taken
probability as the loop exit probability in the original
loop. With this assumption, the block frequencies for the
example shown in Figure 6 (b) can be calculated using the
frequency propagation procedure [19] as follows:

freq(a1) = 10/(1-0.9*0.9) = 53
freq(a2) = freq(a1) * 0.9 = 47

The resulting profile updated by following the rule

the probabilistic approximation may work better than
simply dividing the block frequency by the unrolling
factor for while loops. However, some while loops are
just disguised version of counted loops. In this case, the
“probabilistic approximation” assumption may actually
work less well than dividing the block frequency by the
unrolling factor. Our compiler currently dividing the
block frequencies by the unrolling factor for both counted
and while loops.

a 100

10

10

.1

((aa))

a1

50

a2 50

10

10

1.0

.2

((bb))

Figure 5. Maintaining the profile for a
counted loop with unrolling factor of 2

a 100
.1

10

((aa))

a1 53

a2 47

.1

.1

10

.9

.9

((bb))

Figure 6. Maintaining a profile for a do-while
loop with an unrolling factor of 2

4. Experimental methodology
The compiler collects an early CFG profile in the

beginning of the compilation process and maintains it

throughout the optimizations. We will call the profile
obtained after profile maintenance the “maintained
profile”. To measure the accuracy of the profile
maintenance, we collect an additional profile after all the
optimizations that may change control flow are
performed. We will call the new profile the “accurate
profile”. We compare the maintained profile and the
accurate profile after all the optimizations that may
change control flow are performed. If the maintained
profile is maintained accurately during optimizations, it
should be compared the same as the accurate profile.
This experiment uses a three-pass compilation process as
shown in Figure 7 to compare the profiles.

PPAASSSS 11 PPAASSSS 22 PPAASSSS 33
• Compile

and run
the
program
to collect
an early
profile

• Feedback the
early profile

• Perform
optimization &
maintain the
early profile

• Run the
optimized
program to
collect the
accurate profile

• Feedback the
early profile

• Perform
optimization &
maintain the
early profile

• Feedback the
accurate profile

• Compare
maintained
profile and
accurate profile

Figure 7. Process for comparing maintained
profile with accurate profile

We use Wall's weighted and unweighted matching

method [18] to compare the block frequencies in the
maintained profile and the accurate profile. Assume that
a program (for global matching) or a function in a
program (for local matching) contains N blocks. The
maintained and accurate profiles may have different
frequencies for the blocks. We denote the frequency of a
block blk in the accurate profile with afreq(blk) and the
frequency in the maintained profile with mfreq(blk). We
first generate two sorted lists of the N blocks with the
highest frequency first, one called accurate_list, sorted by
their frequencies in the accurate profile, and another
called maintained_list, sorted by their frequencies in the
maintained profile. We compare the top m blocks in the
two lists and identify the set of blocks in the top m blocks
in the maintained_list that also occur in the top m blocks
in the accurate_list. Let the set of matched blocks be
matched(m). The unweighted matching score is
computed by the following formula:

m

mmatched)(.

The weighted matching score is computed by the
following formula:

∑

∑

=

∈
m

i
i

b

bafreq

bafreq

1

matched(m)

)(

)(

A perfect match will have a score of 100%. A
random sorting of the maintained_list will have a likely
score of m/N. The closer to 100%, the more accurate is
the profile maintenance.

In our experiment, we calculate matching scores for
the top 10% to top 50% of the blocks (i.e. for m equals to
10%*N to 50%*N). In general, if less than 80% of the
top 10%*N of the blocks in the maintained list is in the
top 10%*N of the blocks in the accurate list, we may say
that the profile is NOT maintained accurately. As a
reference, the block frequency information obtained from
static heuristics has a matching score approaching 80%
for the top 10% blocks [19]. In other words, if the
matching score for the maintained profile is less than 80%
for the top 10% of blocks, we may be wasting our effort
to maintain the profile. We could simply use static
heuristics to estimate the block frequencies after each
optimization. On the other hand, if 90% or more of the
top 10% of the blocks in the maintained list is also in the
top 10% of the blocks in the accurate list, we may say that
the profile is maintained accurately.

We present the matching scores collected globally or
locally. The global matching scores are collected by
comparing the maintained_list and the accurate list for the
entire program. The local matching scores are the
average of the scores collected by comparing the two lists
within individual functions. Maintaining global profiles
accurately is important for many inter-procedural
optimizations, such as procedure placement. Maintaining
local profiles accurately is important for many function
local optimizations, such as loop optimizations and code
motion transformations.

5. Experiment results
Our experiment is performed in a research compiler

for the Itanium Processor Family (IPF). The compiler is
based on a production compiler with additional
components to make compiler and architectural
exploration easier. The production compiler team has
spent significant effort to enhance the algorithms for
profile maintenance and resolve related programming
bugs. We believe that the compiler has done nearly all
possible to maintain a profile accurately and it should
represent the state-of-art technology in profile
maintenance. Our focus is to measure the inherent loss of
profile accuracy during compiler optimizations.

In this experiment, the compiler uses the base option
set for maximal performance. The base option set

includes all of the optimizations we mentioned in Section
3. We use the CPU2000 integer benchmarks shown in
Figure 8 running with the train input set to collect and
compare the profiles. We only compare blocks with
frequencies greater than a threshold, such as 500.

PROGRAMS DESCRIPTION

164.gzip Compression/Decompression

175.vpr FPGA circuit placement and routing

176.gcc C programming language compiler

181.mcf Combinatorial Optimization

186.crafty Game Playing: Chess

197.parser Word Processing

252.eon Computer visualization

253.perlbmk PERL programming language

254.gap Group theory, interpreter

255.vortex Object-oriented database

256.bzip2 Compression

300.twolf Place and route simulator

Figure 8. CPU2000 integer benchmarks

5.1. Global matching scores
Figure 9 shows the weighted and unweighted global

matching scores. We first look at the unweighted scores.
On the average, about 85% of the top 10% of blocks in
the maintained list remain in the top 10% of blocks in the
accurate list. This average score is a little low. A few
benchmarks, such as 175.vpr and 181.mcf, show even
worse scores. For example, the compiler maintains only
70% and 57% of the top 10% blocks for the two
benchmarks, respectively. The low global score may
affect global optimizations, such as, procedural
placement.

The weighted and the unweighted global scores are
noticeably different for the 255.vortex benchmark. Its
unweighted matching score for the top 10% blocks is
93%, while its weighted matching score for the top 10%
blocks is only 81%. Similarly for the 181.mcf benchmark:
its unweighted matching score for the top 50% blocks is
88%, while its weighted matching score for the top 50%
blocks is only 74%. Overall, the weighted global
matching scores are slightly lower than their unweighted
counterparts. This indicates that the global loss of profile
accuracy happens more often to the highly frequent
blocks than to the infrequent blocks, probably because

that more optimizations that can change control flow are
applied to frequent blocks.

 uunnwweeiigghhtteedd wweeiigghhtteedd

GGlloobbaall 1100%% 2200%% 3300%% 4400%% 5500%% 1100%% 2200%% 3300%% 4400%% 5500%%

116644..ggzziipp 00..9900 00..9955 00..9944 00..9955 00..9977 00..9922 00..9933 00..9933 00..9933 00..9988

117755..vvpprr 00..7700 00..8866 00..9911 00..9944 00..9966 00..6688 00..8811 00..8888 00..8888 00..8899

117766..ggcccc 00..9922 00..9944 00..9944 00..9966 00..9977 00..9922 00..9933 00..9944 00..9955 00..9955

118811..mmccff 00..5577 00..7733 00..8822 00..8855 00..8888 00..6677 00..7711 00..7733 00..7733 00..7744

118866..ccrraaffttyy 00..8877 00..9911 00..9911 00..9922 00..9922 00..8888 00..9911 00..9933 00..9933 00..9944

119977..ppaarrsseerr 00..8866 00..8888 00..9944 00..9966 00..9966 00..8844 00..8855 00..8899 00..8899 00..9966

225522..EEoonn 00..8855 00..8899 00..9944 00..9966 00..9955 00..8833 00..9900 00..9944 00..9977 00..9977

225533..ppeerrllbbmmkk 00..8811 00..8877 00..9922 00..9966 00..9988 00..8877 00..9911 00..9955 00..9988 00..9999

225544..ggaapp 00..9933 00..9988 00..9988 00..9999 00..9999 00..9911 00..9988 00..9999 11..0000 11..0000

225555..vvoorrtteexx 00..9933 00..9999 11..0000 11..0000 11..0000 00..8811 00..9988 11..0000 11..0000 11..0000

225566..bbzziipp22 00..9944 00..8888 00..9900 00..8899 00..9933 00..9977 00..9944 00..9933 00..9933 00..9944

330000..ttwwoollff 00..9966 00..9988 00..9999 00..9999 00..9999 00..9988 11..0000 11..0000 11..0000 11..0000

ggeeoommeeaann 00..8855 00..9900 00..9933 00..9955 00..9966 00..8855 00..9900 00..9922 00..9933 00..9944

Figure 9. Global Matching Scores

 uunnwweeiigghhtteedd wweeiigghhtteedd

LLooccaall 1100%% 2200%% 3300%% 4400%% 5500%% 1100%% 2200%% 3300%% 4400%% 5500%%

116644..ggzziipp 00..9944 00..9933 00..8899 00..9922 00..9911 00..9966 00..9977 00..9966 00..9977 00..9977

117755..vvpprr 00..8866 00..99 00..9944 00..9944 00..9922 00..8866 00..9911 00..9955 00..9966 00..9955

117766..ggcccc 00..8899 00..9911 00..9911 00..9933 00..9944 00..8899 00..9933 00..9933 00..9955 00..9966

118811..mmccff 00..9944 00..8877 00..9988 00..9966 00..9911 00..9944 00..8888 00..9999 00..9999 00..9977

118866..ccrraaffttyy 00..9911 00..8899 00..9911 00..9933 00..9922 00..9922 00..9911 00..9944 00..9955 00..9966

119977..ppaarrsseerr 00..7788 00..8855 00..8866 00..8877 00..99 00..7799 00..8877 00..8899 00..9911 00..9944

225522..EEoonn 00..9933 00..9944 00..9944 00..9955 00..9933 00..9933 00..9966 00..9955 00..9977 00..9966

225533..ppeerrllbbmmkk 00..8899 00..99 00..9922 00..9944 00..9944 00..99 00..9922 00..9944 00..9966 00..9966

225544..ggaapp 00..9922 00..9944 00..9944 00..9944 00..9955 00..9933 00..9955 00..9966 00..9977 00..9977

225555..vvoorrtteexx 00..9944 00..9966 00..9966 00..9955 00..9977 00..9944 00..9966 00..9966 00..9966 00..9977

225566..bbzziipp22 00..9999 00..9977 00..9955 00..9944 00..9933 00..9999 00..9988 00..9988 00..9988 00..9988

330000..ttwwoollff 00..9966 00..9966 00..9977 00..9955 00..9955 00..9988 00..9988 00..9988 00..9988 00..9988

ggeeoommeeaann 00..9911 00..9922 00..9933 00..9933 00..9933 00..9922 00..9933 00..9955 00..9966 00..9966

Figure 10. Average of Local Matching
Scores

5.2. Local matching scores
Figure 10 shows the local matching scores. The local

matching scores are reasonably high. On the average,
about 91% of the top 10% of blocks in the maintained list
remain in the top 10% of blocks in the accurate list.
Benchmarks, such as 175,vpr and 197.parser, however,
show relatively low local scores. For example, the
compiler maintains only 86% and 78% of the top 10%
blocks for the two benchmarks, respectively. In general,
the weighted local matching scores are higher than their
unweighted counterparts.

50%

60%

70%

80%

90%

100%

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.E

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

ge
om

ea
n

weighted top% local scores weighted top% global scores

Figure 11. Comparison of Local and Glocal

Matching Scores

5.3. Compare global and local matching scores
Figure 11 shows the weighted local and global

matching scores for the top 10% of blocks. The local
scores are higher than the global scores on the average.
This indicates that the compiler maintains the relative
ordering within individual functions better than the
relative ordering across the whole program. However, a
few benchmarks, such as 176.gcc and 197.parser, have
lower local matching scores than their global matching
scores. This is because the two benchmarks have
complicated control flow graph with many switch
statements. The complicated control flow graphs make
the relative ordering of blocks within functions hard to
maintain.

The benchmarks, such as 176.vpr and 181.mcf have
very low global scores. Late we will show that the low
global scores are caused by the function inlining
optimization.

5.4. Distribution of functions by local scores
To take a closer look at the benchmarks, such as

197.parser and 176.gcc, with low local scores, we show
weighted local matching scores for individual functions in
the benchmarks. Notice that, functions with fewer than

10 blocks that are executed more than 500 times will not
have matching scores and are not included.

Figure 12 shows the scatter graph of the functions by
their weighted top 10% local matching scores for
197.parser. The matching scores often are either zeros, or
between 50% and 100%. A noticeable number of
functions (20 out of 120) have top 10% matching scores
of zeros. For these functions, the top 10% of the blocks in
the maintained list are totally different from the top 10%
of blocks in the accurate list.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 20 40 60 80 100 120

weighted top 10%

Figure 12. Local matching scores of

functions in 197.parser.

Figure 13 shows the scatter graph of the functions for

176.gcc. The distributions are similar to that for
197.parse.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 50 100 150 200 250 300 350 400

weighted top 10%

Figure 13. Local matching scores of

functions in 176.gcc.

5.5. Effects of optimizations on matching scores
Benchmarks 175.vpr and 181.mcf have significantly

lower global matching scores than other benchmarks. To
determine the optimizations that may cause the low
matching scores, we would need to instrument user
programs after each optimization and compare the
accurate profile collected at that time with the maintained
profile. This is a difficult task, however, as adding a

profiling module after each of the optimization require
significant amount of work.

In this experiment, we selectively turn off
optimizations and compare the maintained profile with
the accurate profile. If the matching scores increase when
an optimization is turned off, we may deduce that the
optimization caused loss of profile accuracy. We use the
following compiler configurations for selectively turning
off optimizations.

• Base: The default configuration for maximal

performance.
• NoI: Turning off function inlining of the base

configuration.
• NoU: Turning off loop unrolling of the base

configuration.

175.vpr global weighted scores

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

noI&noU noU noI base

10% 20% 30% 40%

Figure 14. Optimizations and 175.vpr’s

global matching scores

175.vpr local weighted scores

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

noI&noU noU noI base

10% 20% 30% 40%

Figure 15. Optimizations and 175.vpr’s local

matching scores

The weighted global matching scores with different
configurations for 175.vpr are shown in Figure 14. When
function inlining and loop unrolling are both turned off
(noU&noI), the maintained profile matches the accurate
profile precisely. This indicates that function inlining or
loop unrolling is responsible for the low global scores.
Turning off loop unrolling (noU) and function inlining
(noI) individually points out that function inlining is
responsible for the low global scores for 175.vpr.

The weighted local matching scores with different
configurations for 175.vpr are shown in Figure 15.
Turning off loop unrolling (noU), function inlining (noI),
or both (noU&noI) improve the local scores for 175.vpr
only slightly.

The weighted global and local matching scores with
different configurations for 181.mcf are shown in Figure
16 and Figure 17. Function inlining causes significant
loss of global scores but only slight loss of local scores
for 181.mcf.

181.mcf global weighted scores

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

noI&noU noU noI base

10% 20% 30% 40%

Figure 16. Optimizations and 181.mcf global

matching scores

181.mcf local weighted scores

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

noI&noU noU noI base

10% 20% 30% 40%

Figure 17. Optimizations and 181.mcf local

matching scores

6. Conclusions and future work
In this paper, we study the accuracy of profile

maintenance in an optimizing compiler. We measure the
accuracy with the weighted and unweighted matching
scores both locally and globally. In general, there is
noticeable loss of profile accuracy both globally and
locally, although the global matching scores are lower
than the local matching scores. The loss of accuracy can
be attributed to the fact that most of the profile
maintenance operations follows the rule of probabilistic
approximation. In particular, function inlining may be
responsible for the global loss of profile accuracy.

The result in the paper is only the first step to
investigate the accuracy of profile maintenance, which is
an important subject in optimizing compilers for modern
processors. This issue has not been considered before in
literature and we hope our work will lead to more in depth
investigations. The following problems remain open to
be studied.
• Obtain more detailed understanding about

optimizations and their affects on the loss of the
profile accuracy. We briefly examined the effects of
function inlining and loop unrolling on two
benchmarks. More detailed study is needed to
identify the optimization that causes most of the loss
in profile accuracy.

• Enhance the profile information so it can be more
accurately maintained. For example, we may collect
additional information in the early profile phase, and
use the information to guide the profile maintenance
during optimizations. For the control flow graph in
Figure 1 (a), the branch correlation information
between blocks a, c, and e may suggest that the new
frequencies in Figure 2 are more reasonable than
those in Figure 1 (b).

• Design new profile maintenance methods that are
easier to apply and more robust. One approach
would be to log transformations rather than directly
update the profile information after each optimization
step. From the control flow graph before the
transformation and the transformation log, a separate
module may be designed to update the profile. This
way, the profile maintenance is performed in one
place and will be less error prone. Another way
would be to only update profile in a few important
places during optimization, and more subtle
maintenance can be performed after the optimization.

• Order compiler optimizations to reduce the effect of
profile inaccuracy on performance. It may be useful
to apply the optimizations that will not lose profile
accuracy earlier.

• Order compiler optimizations to tolerate inaccuracy
in profile maintenance. It may be beneficial to apply
the optimizations that need more accurate profile

before the optimizations that may work with
inaccurate profile.

• Qualify the performance impact due to loss of profile
accuracy. Inaccuracy in a profile may not always
lead to loss of performance. For example, a highly
frequent block may not be optimized anyway due to
the machine constraints, so misclassifying the block
as infrequent should not affect the overall
performance.

7. Acknowledgements
We would like to thank Yong-Fong Lee for his

valuable comment about the paper, and our colleagues in
Intel Programming Systems Research Lab and Intel
Compiler Lab for implementing many of the profile
maintenance operations. We appreciate the comments
from the anonymous reviewers that helped improve the
quality of the paper.

References
[1] Ball, T. and J. Larus, “Optimally profiling and tracing

programs,” ACM Transactions on Programming
Languages and Systems, 16(3): 1319-1360, July 1994.

[2] Ball, T. and P. Mataga, M. Sagiv, “Edge profiling versus
path profiling,” Proceedings of the 25th ACM SIGPLAN-
SIGACT symposium on Principles of programming
languages January 1998

[3] Bharadwaj, J., K. Menezes, C. McKinsey, “Wavefront
scheduling,” Proceedings of the 32nd Annual ACM/IEEE
international symposium on microarchitecture. November
1999.

[4] Calder, B., P. Feller, A. Eustace, “Value profiling,”
Proceedings of the thirtieth annual IEEE/ACM
international symposium on microarchitecture December
1997

[5] Chang, P. P, S. Mahlke, and W.M. Hwu, “Using profile
information to assist classic code optimizations,”
Software-practice and Experience, 1991.

[6] Chang, P. P, W.-W. Hwu, “Inline function expansion for
compiling C programs,” Proceedings of the SIGPLAN '89
Conference on Programming language design and
implementation June 1989. ACM SIGPLAN Notices,
Volume 24 Issue 7

[7] Gupta, R., Benson, D.A.; Fang, J.Z., "Path profile guided
partial dead code elimination using predication,"
Proceedings, 1997 International Conference on Parallel
Architectures and Compilation Techniques, 1997, Page(s):
102 -113

[8] Hwu, W.M., et al, "The Superblock: An Effective
Technique for VLIW and Superscalar Compilation," The
Journal of Supercomputing, Kluwer Academic Publishers,
1993, pp. 229-248

[9] Intel Corp, Intel® Itanium™ Processor Hardware
Developer’s Manual, 2000.
http://developer.intel.com/design/ia-64/manuals.htm.

[10] Kreahling, W. C., C. Norris, “Profile assisted register
allocation,” Proceedings of the 2000 ACM symposium on
Applied computing. March 2000

[11] Lavery, D. M., W.M. W. Hwu, “Unrolling-based
optimizations for modulo scheduling,” Proceedings of the
28th annual international symposium on microarchitecture
December 1995

[12] Mowry, T. C., C.K. Luk, “Predicting data cache misses in
non-numeric applications through correlation profiling,”
Proceedings of the thirtieth annual IEEE/ACM
international symposium on microarchitecture December
1997

[13] Pettis, K., R. C. Hansen, “Profile guided code
positioning,” ACM SIGPLAN Notices, Proceedings of the
conference on Programming language design and
implementation. June 1990

[14] Ramirez, A., L.A. Barroso, K. Gharachorloo, R. Cohn, J.
Larribe-Pay, P. G. Lowney, and M. Valero, "Code Layout
Optimizations for Transaction processing Workloads,"
ISCA28, June 2001.

[15] Sarkar, V., “Optimized unrolling of nested loops,”
Proceedings of the 2000 international conference on
Supercomputing. May 2000.

[16] Schlansker, M., S. Mahlke, R. Johnson, “Control CPR: a
branch height reduction optimization for EPIC
architectures,” Proceedings of the conference on
Programming language design and implementation May
1999. ACM SIGPLAN '99 Volume 34 Issue 5

[17] Vahid, F., “Procedure cloning,” ACM Transactions on
Design Automation of Electronic Systems (TODAES)
January 1999, Volume 4 Issue 1

[18] Wall, D. W. "Predicting program behavior using real or
estimated profiles," Proceedings of the conference on
Programming language design and implementation, May
1991, ACM SIGPLAN Notices, Volume 26 Issue 6.

[19] Wu, Y., J. Larus, “Static Branch Frequency and Program
Profile Analysis,” Proceedings of the 27th Annual
ACM/IEEE international symposium on
microarchitecture. November 1994.

[20] Young, C., M. D. Smith, “Better global scheduling using
path profiles,” Proceedings of the 31st annual ACM/IEEE
international symposium on microarchitecture. November
1998

Mastering Startup Costs in Assembler-Based

Compiled Instruction-Set Simulation

Ronan Amicel

IRISA/INRIA

Campus de Beaulieu

35042 Rennes Cedex

FRANCE

ramicel@irisa.fr

F rançois Bodin

IRISA/INRIA

Campus de Beaulieu

35042 Rennes Cedex

FRANCE

bodin@irisa.fr

Nov ember 30, 2001

Abstract

The increasing size and complexity of embedded softw are requires ex-

tremely fast instruction-set simulation. Compiled instruction-set simula-

tion can pro vide high simulation speed, but the cost of generating and

compiling the simulator can be a problem. We claim that e�cient com-

piled instruction-set simulation with small startup costs is possible, using

our assembler-level approach. We presen tAbsciss, a retargetable and

�exible system that generates optimized compiled simulators from assem-

bler programs. Experimental results sho w the produced simulators to be

signi�cantly faster than interpretiv e sim ulators,and also show that our

assembler-based approach allows to master the simulator generation and

compilation times.

1 Introduction

Instruction-set simulation can be used to ev aluate di�erent instruction-set ar-

chitectures (ISAs) in the context of architecture exploration, or to validate a

compiler back-end, to test, tune and debug programs, on a user friendly PC or

w orkstation rather than on actual silicon which might not even exist yet.

The increasing size and complexity of embedded softw are requires extremely

fast instruction-set simulation. Compiled instruction-set simulation [8] is an

approach that is potentially much faster than interpretation, but it has a startup

cost due to the generation and compilation of the simulator. This startup cost

is often seen as a major dra wback and has limited the adoption of compiled

instruction-set simulation.

In this paper, we present Absciss, a generator of compiled instruction-set

simulators that works at the assembler level. We show that this approach allows

to build a system that combines �exibility, accuracy and very fast simulation,

along with a small startup cost.

Absciss automatically generates compiled simulators from a description of

the target architecture. A tpresent, this allows us to target various statically

scheduled RISC and VLIW processors. Within this kind of architectures, the

simulators generated by Absciss are cycle-accurate. That is, the simulator

outputs the exact number of cycles needed by the target processor to run the

program. Caches can be simulated by interfacing to an external module. Other

architectures can be simulated at a functional level, that is only the behavior of

the program will be simulated.

Compiled instruction-set simulation has some limitations, suc h as its in-

abilit y to run programs containing self-modifying code or dynamically loaded

libraries. F ortunately, these are seldom used in the con text ofembedded sys-

tems.

Unlike previous approaches [4, 5, 7, 10], the Absciss generator takes assem-

bler programs as input instead of binaries. The machine description does not

need to specify a binary encoding for the ISA, which, in the context of archi-

tecture exploration, enables faster prototyping. There is no need to specify the

executable �le format either. Besides, tools like an assembler or a linker for the

target ISA are not required. We will also show how this approach helps reducing

generation and compilation times.

T o reac h high performance, a compiled simulator has to be streamlined.

That is, the generator should use as much static information as possible, so

that the generated simulator only has to deal with the remaining dynamic part.

Absciss includes a number of optimizations in the generator in order to produce

an e�cient simulator.

Moreover, if the user is only interested in a subset of the information that

the simulator can produce, then only the necessary even ts should be simulated.

Absciss w orks ina modular w ay,allowing it to produce a simulator tailored

to the needs of the user, from a simple functional simulator to a detailed cycle-

accurate one producing speci�c pro�ling information.

The rest of this paper is organized as follows. In Section 2, we discuss other

w orks related to instruction-set simulation. In Section 3, we present Absciss,

our simulator generator, along with the machine description used to retarget

it. The overall performance of Absciss and the reduction of startup costs are

discussed in Section 4.

2 Related Works

In this section w e�rst present existing techniques for instruction-set simula-

tion. Then w ediscuss automatic generation of functional and cycle-accurate

simulators from machine descriptions.

2.1 Techniques for Instruction-Set Simulation

The basic technology for instruction-set simulation is interpretation. An inter-

preter uses a simple �fetch-de code-exe cute�loop, a technique that works with

all kinds of programs, including self-modifying code. The major drawback is

its poor performance, because each instruction has to be decoded over and over

again. A ttempts to make it faster involve caching instructions either in a prede-

coded form, or after translating them to the host instruction set, using dynamic

binary translation.

Binary translation [12] converts a binary program from the target architec-

ture to the host instruction-set. The translation can be either static, when the

whole program is processed before execution, or dynamic when instructions are

translated on-the-�y.

Compiled instruction-set simulation [8] is similar to static binary translation

in that the whole target program is translated once. But instead of directly gen-

erating a binary, a compiled simulator generator produces a high-level language

program implementing the target program's behavior. This program is then

compiled using the host compiler. This makes compiled simulation independent

from the host architecture, and allows to rely on the host compiler to perform

low-level optimizations.

2.2 Automatic Generation of Instruction-Set Simulators

Most instruction-set simulators are bound to speci�c hosts and/or targets.

While porting them to a small number of architectures might be reasonable, it

is unpractical when fast and easy retargeting is needed. In that case, simulators

can be automatically generated from architecture descriptions. An architecture

description language (ADL) enables functional simulation by de�ning the be-

ha vior of each instruction of the target ISA. In addition, an ADL can describe

the structure of the processor, in order to perform cycle-accurate simulation. A

more detailed survey of ADLs can be found in [13].

Interpretiv esimulators have been generated from descriptions written in

languages such as nML [2, 7], ISDL [3, 4] or EXPRESSION [5]. While nML is not

w ell suited to cycle-accurate simulation, ISDL currently allo ws to model VLIW

architectures with simple pipelines. EXPRESSION enables detailed modeling

of the structure of both the processor and the memory hierarchy.

An approach was recently described [6], where bothin terpretive and com-

piled simulators can be generated from an instruction-set model, extracted from

a MIMOLA structural description.

The work that is closest to ours is the generation of compiled instruction-set

simulators from binary programs [1, 9], using a machine description written in

LISA [10]. LISA allows to model more complex pipelines than ISDL, but is

limited to ASAP1 scheduling.

3 The Absciss Simulator Generator

In this section, w e describe Absciss (Assembly-Based System for Compiled

Instruction-Set Simulation), our generator of compiled instruction-set simula-

tors. Absciss is based on the Salto [11] framework, which supplies the parser

for assembler programs, and provides an object-oriented in terface to their struc-

ture.

3.1 Machine Description

An instruction-set simulator must accurately simulate the functional behavior

of a program. In addition, for a cycle-accurate simulator, the execution's timing

also has to be simulated. How ever, even a functional simulator may need some

1As Soon As Possible.

timing information. For instance, on a VLIW processor the order of register

writes depends on the respective latencies of the producing instructions.

In order to automatically generate simulators, Absciss extracts information

about the target processor from an extended Salto machine description. This

description contains both behavioral and structural aspects of the target archi-

tecture. A dditionally, the description covers the syntax of the instruction-set,

which allo ws the generator to parse assembler programs.

F rom our experience, it tak es up to three months to write and debug a

complete machine description. The cost of later changes to the instruction-set or

to the reservation tables, for exploratory purposes, is then minimal. Moreover,

the description is not limited to instruction-set simulation. It can also be used to

retarget other tools, such as a code scheduler or an assembly-level code optimizer

[11].

3.1.1 Structural Aspect

A Salto description lists the processor resources, partitioned into storage re-

sources and functional units. It then provides structural information in the form

of reservation tables associated with instructions. A reservation table speci�es

which resources are used, read or written at each step of the instruction's exe-

cution. This structural information captures the static aspect of the execution's

timing, which allows to describe statically scheduled processors, such as VLIW

ones.

3.1.2 F unctional Aspect

We expand Salto machine descriptions by adding functional information that

speci�es the semantics of instructions. This information is written in a sim-

ple R TL-like language, based on types and operators de�ned in the Zephyr

project [14], with a few extensions such as saturating arithmetics. Table 1

Instruction Description Semantics

iadd integer add $3 = add($1, $2)

dspidualadd
dual clipp ed add $3[0..15] = addss($1[0..15], $2[0..15]);

of signed 16-bit half-wor ds $3[16..31] = addss($1[16..31], $2[16..31])

Table 1: Examples of instructions semantics.

sho wsexamples of semantics speci�cations tak en from our T riMediamachine

description.

3.2 Simulator Generation

An assembler �le is represented b ySalto as a set of procedures, each one being

a control-�o w graph where vertices are basic blocks and edges are branches. F or

each procedure in the target program, Absciss goes through all basic blocks

and generates a tree-like representation of the semantics of instructions, using

information from the machine description.

First, the semantic tree is chec ked for typing coherency, then it is simpli�ed

using optimization rules (see 3.3). Finally, C++ code simulating the behaviour

of instructions is generated from the semantic representation. This is unlike

some other approaches where the semantics of an instruction is expressed di-

rectly as C code, and where the generator textually substitutes the instruction's

arguments.

We have implemented tw o di�erent code generation strategies. The default

strategy targets high performance, by using native C types and operators when

the size of the manipulated values matches the host's native word size. When

this is not possible, the generator falls back to a more �exible strategy . This

backup strategy uses generic types and operators from a library, that allows to

simulate target architectures with registers of any size.

When working at the symbolic assembler lev el, instructions do not have an

address yet. Therefore, Absciss relies on the instruction labels in the control

�o wgraph to simulate branches. When the target of a branch is determined

to be in the same simulator function, a simple �goto� is generated. When

the target is in another function, or cannot be statically determined, code is

generated to use a tw o-lev el dynamic dispatch mechanism, that uses �switch�

statements to bring control-�o w to the right destination label.

This dispatch mechanism is also used to implement calls to external func-

tions such as library or system calls. When such a call is made by the simulated

program, the �rst-level dispatcher directs the control �ow to a special function.

This function emulates the call using the host operating system. It �rst retriev es

the arguments from the simulated registers and/or memory, calls the host func-

tion, writes the result to the expected location, then gives con trol back to the

program.

A dra wback of the assembler-lev el approach, how ever, is the decreased ac-

curacy of instruction cac he simulation. Absciss needs to assign addresses to

instructions by itself, possibly leading to a code layout di�erent from the origi-

nal.

3.3 Optimizations

A large part of the optimizations is done by the compilers. First, the simulated

program is optimized by the target compiler, then the generated simulator may

be optimized by the host compiler. By addressing optimization opportunities

not taken in to account by the compilers, we aimat optimizing the simulation

process.

3.3.1 F unctional Simulation

T o optimize functional simulation, Absciss simpli�es the semantic tree by re-

moving unnecessary computations introduced during its creation. To this end,

it uses static evaluation of operators combined with some algebraic simpli�ca-

tions. This ensures that the generated simulation code does not contain any

ine�cient computations.

3.3.2 Cycle-Accurate Simulation

T ooptimize cycle-accurate simulation on a VLIW architecture, the generator

statically computes the total cycle count for each basic block using the structural

information from the reservation tables. The cost in the produced simulator is

then only one �add� instruction per simulated basic block, in addition to the

possible cost of an external cache simulator.

3.3.3 Compilation Time

The compilation time of the generated simulator �les depends on the size of the

C function containing the simulation code. The compilation time increases in a

super-linear way with the size of this function. Also, if this function is too big,

some compilers may fail to compile it.

Thus, it is important that the generator outputs the source code for the sim-

ulator as a set of functions of manageable size. Therefore, we implemented an

automatic splitting mechanism in Absciss. Instead of generating a single sim-

ulator function per input assembler �le, the representation of the assembler �le

is split in to sev eral slices.The cut points are c hosen on basic block boundaries,

according to a maximum number of bundles per slice.

The e�ciency of this mechanism is evaluated in Section 4.2.

4 Performance Analysis

In this section we present the results of some performance tests. First, we com-

pare the overall performance of Absciss with that of an industrial interpretiv e

simulator. Then, w esho whow the startup costs of compiled instruction-set

simulation are mastered in our approach.

4.1 Overall Performance

We �rst compare the overall performance of our approach to a traditional in-

terpretive simulator.

With interpretive simulation, the total simulation time depends on the pro-

gram's dynamic instruction count. With compiled simulation, the total simula-

tion time is split into generation, compilation and execution times. Generation

and compilation times are a function of the static instruction count only, whereas

execution time is a function of the dynamic instruction count.

4.1.1 Experimental Setup

Our experiments w ere performed using the TriMedia ISA, a VLIW architecture

from Philips Semiconductors. Its main features are 128 general purpose regis-

ters, 5 issue slots per instruction, and RISC-like operations including �oating-

point and multimedia extensions.

The reference simulator was tmsim, the T riMedia instruction-set simulator

distributed by Philips. tmsim is an in terpretiv esimulator and takes binary

programs as input.

We used an implementation of MPEG video decoding as our example target

program, with input streams of various sizes. Both systems had to perform a

cycle-accurate simulation, but assuming perfect caches. In the case of Absciss,

w e compared the e�ect of di�erent optimization levels for the host compiler.

All the tests were run on a 440 MHz UltraSPARC-IIi workstation, and the

host compiler was gcc 2.95.2.

4.1.2 Results

Input stream Phase tmsim
absciss

gcc -O0 gcc -O1 gcc -O2 gcc -O3

Generation 0.0 173.5 173.5 173.5 173.5

�Random� Compilation 0.0 162.3 188.3 332.6 333.6

(38 KB) Execution 213.2 17.8 2.7 2.3 2.3

T otal 213.2 353.6 364.5 508.4 509.4

Generation 0.0 173.5 173.5 173.5 173.5

�P enguin� Compilation 0.0 162.3 188.3 332.6 333.6

(496 KB) Execution 643.5 52.4 8.8 7.6 7.5

T otal 643.5 388.2 370.6 513.7 514.6

Generation 0.0 173.5 173.5 173.5 173.5

�Bear� Compilation 0.0 162.3 188.3 332.6 333.6

(1432 KB) Execution 7205.8 617.2 92.4 77.4 77.1

T otal 7205.8 953.0 454.2 583.5 584.2

Table 2: MPEG simulation times (in seconds).

The simulation times, for di�erent input streams, appear in Table 2. With

both simulators, the program gave identical results, and the computed cycle

count was the same.

With a very small data set, the startup cost makes Absciss slow erthan

tmsim. How ever, with the other data sets, the overhead is amortized thanks

to the faster execution. The speedup of Absciss on execution ranges from

12x to 93x, depending on the level of compiler optimizations. When taking

the startup cost into account, this leads to an overall speedup of up to 16x on

these benchmarks. Higher overall speedups could how ever be achieved on longer

running benchmarks.

The results show that our system has an initial overhead of 5 to 9 minutes in

this case, due to the generation and compilation of the simulator. The genera-

tion time is �xed for a given program, and the compilation time varies with the

optimization level. The preferrable optimization level depends on the execution

time of the program. Except for the smallest one, the best tradeo� with our

data sets is -O1, how ev er with larger data sets-O3 might be better, since the

longer compilation time would then be amortized by the faster execution.

To sum it up, we see that the generation and compilation overhead is quickly

amortized on long simulation runs. It can also be amortized over multiple

executions of the simulator with di�erent input data, as this does not require

recompiling. Thus, compiled instruction-set simulation signi�cantly speeds up

the simulation of large programs.

4.2 Startup Costs

In the classical approach to compiled instruction-set simulation, a simulator is

generated from a binary program. Absciss, how ev er, generates a simulator from

a set of assembler �les. A major advan tage of this approach, is that the program

is naturally split into multiple parts, making both generation and compilation

faster.

T o study the e�ect of the size of input programs on the simulator compilation

time, w emanually merged the dozen of C source �les of our MPEG video

decoder benchmark. We compiled the resulting C source �le to a large TriMedia

assembler �le, which we then used as input for Absciss.

We then measured the total time needed to compile a simulator generated

from our large assembler �le. We used slice sizes from 128 bundles, resulting in

72 slices, up to 6144 bundles, resulting in 2 slices. Note that when we disabled

the splitting machnism to get a single slice, the compiler failed to compile the

generated simulator correctly. The compilation times are shown in Fig. 1.

These results show that the total compilation time highly depends on the size

of the generated functions. By using a slice size of 512 bundles, the compilation

time can be divided by a factor of 2.3 to 4.5, compared to a slice size of 6144.

However, w e see that smaller slice sizes are not desirable sincethey introduce

0

100

200

300

400

500

600

700

800

128 256 512 1024 2048 4096 6144

gcc -O0
gcc -O1
gcc -O2

Figure 1: T otal compilation time (in seconds) as a function of slice size (in

number of bundles).

an additional overhead.

Thus, the approach used by Absciss to work at the assembler lev el lev erages

the natural division of a program into assembler �les, allowing to master the

generation and compilation times. Moreover, by automatically splitting large

input �les into slices of manageable size, Absciss can master the simulator

compilation time even on large programs.

5 Conclusion

With embedded programs of increasing complexity, fast instruction-set simula-

tion becomes a necessit y. Compiled instruction-set simulation can deliver the

simulation speed, but its associated startup cost can be seen as prohibitive.

In this paper w e ha ve presented Absciss, a generator of compiled

instruction-set simulators that aims at overall performance, by associating fast

simulation and a mastered simulator compilation time.

F rom a set of assembler input �les, Absciss automatically generates an op-

timized C++ program which simulates the behavior and the timing of the pro-

gram. T o this end, it uses a detailed machine description covering the semantics

of instructions and their associated resource usage.

Our performance tests show that Absciss allo ws signi�cantly faster simu-

lation than a traditional interpretiv e approach, especially on long running pro-

grams. We also show that by working at the assembler level, and by adding a

splitting mechanism, our approach helps reduce simulator generation and com-

pilation times.

References

[1] Joac him Fitzner, Chris Schläger, Davorin Mista, and Vojin Zivojno vic. Im-

plementing LISA Tools Based on a DSP Architecture Description. In Pro-

ceedings of ICSPA T, 1999.

[2] Markus Freericks. The nML Machine Description Formalism. T echnical

Report 91-15, TU Berlin, 1991.

[3] George Hadjiyiannis, Silvina Hanono, and Srinivas Devadas. ISDL: An

Instruction Set Description Language for Retargetability. In Proceedings of

the 34
th Design Automation Conference, pages 299�302, June 1997.

[4] George Hadjiyiannis, Pietro Russo, and Srinivas Devadas. A Methodology

for Accurate Performance Evaluation in Architecture Exploration. In Pro-

ceedings of the 36
th Design A utomationConference, pages 927�932, June

1999.

[5] Ashok Halambi, P eterGrun, Vijay Ganesh, Asheesh Khare, Nikil Dutt,

and Alex Nicolau. EXPRESSION: A Language for Arc hitectureExplo-

ration through Compiler/Simulator Retargetability. In Pr oceedings of De-

sign Automation & Test in Europ e, March 1999.

[6] Rainer Leupers, Johann Elste, and Birger Landwehr. Generation of Inter-

pretiv e and Compiled Instruction Set Simulators. In ASP-DA C'99, 1999.

[7] F. Löhr, Andreas Fauth, and Markus Freericks. Sigh/Sim - An Environ-

ment for Retargetable Instruction Set Simulation. Technical Report 93-43,

TU Berlin, 1993.

[8] Christopher Mills, Stanley C. Ahalt, and Jim Fowler. Compiled Instruction

Set Simulation. Software�Practice and Experience, 21(8):877�889, August

1991.

[9] Stefan Pees, Andreas Ho�mann, and Heinrich Meyr. Retargeting of Com-

piled Simulators for Digital Signal Processors Using a Machine Description

Language. In Pr oceeding of Design Automation and Test in Europe, 2000.

[10] Stefan P ees, Andreas Ho�mann, Vojin Zivojnovic, and Heinrich Meyr.

LISA - Machine Description Language for Cycle-Accurate Models of Pro-

grammable DSP Architectures. In Pr oceedings of the36th Design Automa-

tion Conference, pages 933�938, June 1999.

[11] Erven Rohou, F rançois Bodin, André Seznec, Gwendal Le Fol, F rançois

Charot, and Frédéric Raimbault. Salto: System for Assembly-Language

Transformation and Optimization. In Pr oceedings of the 6th Workshop on

Compilers for Par allelComputers, pages 261�272, December 1996. (Also

as IRISA Technical Report PI-1032 or INRIA Research Report RR-2980.).

[12] Richard L. Sites, Anton Cherno�, Matthew B. Kirk, Maurice P .Marks,

and Scott G. Robinson. Binary Translation. Communications of the ACM,

36(2):69�81, February 1993.

[13] Hiroyuki T omiyama, Ashok Halambi, P eterGrun, Nikil Dutt, and Alex

Nicolau. Arc hitecture Description Languages for Systems-on-Chip Design.

In APCHDL'99, October 1999.

[14] The Zephyr Compiler Infrastructure. http://www.rcs.virginia.edu/zephyr/.

On the Predictability of Program Behavior Using Different
Input Data Sets

Wei Chung Hsu, Howard Chen, Pen Chung Yew Dong-Yuan Chen
Department of Computer Science Microprocessor Research Labs
University of Minnesota Intel

Abstract

Smaller input data sets such as the test and the train input sets are commonly used in simulation to
estimate the impact of architecture/micro-architecture features on the performance of SPEC benchmarks.
They are also used for profile feedback compiler optimizations. In this paper, we examine the reliability
of reduced input sets for performance simulation and profile feedback optimizations. We study the high
level metrics such as IPC and procedure level profiles as well as lower level measurements such as
execution paths exercised by various input sets on the SPEC2000int benchmark. Our study indicates that
the test input sets are not suitable to be used for simulation because they do not have an execution profile
similar to the reference input runs. The train data set is better than the test data sets at maintaining similar
profiles to the reference input set. However, the observed execution paths leading to cache misses are
very different between using the smaller input sets and the reference input sets. For current profile based
optimizations, the differences in quality of profiles may not have a significant impact on performance, as
tested on the Itanium processor with Intel compiler. However, we believe the impact of profile quality
will be greater for more aggressive profile guided optimizations, such as cache prefetching.

1 Introduction

The SPEC benchmark suite [Henn2000] is a collection of CPU-intensive application programs. It has

been widely used in the research community to evaluate architecture and micro-architecture designs and

compiler optimizations. From SPEC89 to SPEC2000, the number of benchmarks as well as the execution

time of each program has continuously been increased. The increase in execution time was most drastic

when the SPEC92 was updated to the SPEC95. On average, each SPEC92int program executes about 1.3

billion instructions [Yung96] while this number increased to 64 billions for SPEC95int programs. In

SPEC2000int, the average number of dynamic instructions executed becomes a few hundred billion

instructions. With significantly increased execution time, and with more complex architecture/micro-

architecture features to simulate, it becomes very difficult to simulate a complete run of the SPEC

programs. A common practice in the research community is to take a small snapshot of the execution

trace, for example, the first 100 to 500 million instructions of the trace. Alternatively, some researchers

use smaller input data sets provided by SPEC to reduce simulation time1. In addition to the reference

input sets, which give the complete run of each program, SPEC also provides the test data sets which give

1 A survey of recent research publications shows that more than 60% of studies used reduced data sets.

a quick test of the benchmark, and the train data sets which allow the compiler to generate training

profiles used for PBO (Profile-Based Optimization).

With the execution of a few hundred billion instructions in each program, the first 100 million

instructions constitute about 0.1% of the total runtime, and are likely to perform initializations. Therefore,

an initial snapshot of a simulation trace may be not representative. Even though some researchers wait

until the initializations are complete, it is not clear how to obtain a snapshot that can represent the

characteristics of the program. Several programs exhibit different execution phases, exercising completely

different code and data behavior when it shifts from one phase to another. To accurately represent the

execution of a benchmark program with multiple phases, at least one trace snapshot would need to be

captured for each phase.

The approach of using reduced data sets may be more attractive, because the smaller input sets may

exercise the similar execution phases like the reference input sets do. Since the test data sets and training

data sets give a reduced runtime for the benchmark programs, a large amount of research has been

conducted using these smaller data sets in their simulations to conduct faster performance evaluation.

However, since the test and the train data sets were not originally designed to serve as reduced data sets

for the reference input, they may exercise different execution paths in the programs than the reference

input sets. If this is indeed the case, the performance evaluation conducted based on such input sets could

be misleading. For example, if the complete run with reference input would cause significant I-cache

misses and D-cache misses, but the run with test input incurs no cache misses, the evaluation results

based on the test runs would be very misleading.

In 1992, Fisher and Freudenberge [Fish92] reported that branch instructions could be predicted statically

by using previous runs of a program. This provides evidence to support Profile Based Optimizations

(PBO). Starting in SPEC92, training input sets have been provided by SPEC for compilers to generate

execution profiles and perform profile directed optimization. The success of using small data sets to

predict branch directions for future runs may suggest that test or training input sets could be used to

predict the program behavior for the reference runs. However, some recent studies [Cohn98] on post-link

time optimizations report that an application may exercise different code when different users use the

application. This observation is particularly common for general-purpose applications that are rich in

features. Profiled based optimization has also advanced beyond static branch prediction. For example,

some commercial compilers [Ayer98] have been using profiles to determine what procedures to optimize,

what execution paths to get a high priority on resource allocation [Holl96], and which region to allocate

more optimization time. Furthermore, recent research suggests using path profiling for trace cache

allocation [Rami99], using value profiling for value prediction optimization [Cald99], and using cache

profiling for data layout optimization [Cald98]. It is therefore important to understand to what extent we

may use one input data set to predict the program behavior of future runs.

In this paper, we evaluate how reliably we can use small input sets in place of more time consuming

reference input sets. For some benchmark programs, small input sets exhibit the same execution behavior

as the reference inputs, and the research community can comfortably use them to reduce simulation time.

However, some programs do not have train or test input sets that are representative of their reference

input set. We first examine the similarity of program behavior using high-level information such as

execution profiles and IPC numbers. We then go into low-level analysis to investigate the frequent

execution paths covered by each input data sets. Since the small and “light” input data sets generally do

not stress the data cache as much as the reference input data set does, we also investigate whether

different “heavy” input sets stress the data cache in a similar way. In other words, we would like to know

how accurately and reliably we can use one input sets to predict the data cache behavior of a different set.

This study has two goals. One goal is to provide the research community some guidelines on using

smaller input sets in reducing simulation time for SPEC benchmarks without giving misleading

performance results. The second goal is to examine program behavior under different input sets. The key

question is whether the smaller data set exercises the same execution paths and exhibits the same behavior

as the reference input sets do? If not, we may not use the simulation results from smaller input sets to

indicate the performance impact of the Spec2000 benchmark. Also, we evaluate the performance impact

of using different input sets on the Itanium processor using the Intel compiler.

The remainder of this paper is organized as follows. In Section 2, we look at the high-level measures of

execution profiles of Spec2000 programs using different input sets. In Section 3, we describe how to use

the branch trace buffer feature in the Itanium processor to look into frequently executed paths exercised

by different input data sets. Section 4 compares the frequent execution paths sampled by running different

input data sets. Section 5 compares the execution paths for frequent data cache misses since many

Spec2000int programs exhibit a high data cache miss rate. We evaluate the impact of different profiles on

PBO performance in section 6, and the summary and conclusion are given in Section 7.

2 Execution Profiles and IPC Comparison

2.1 Execution Profile Comparison

We first examine the high-level performance characteristics of each benchmark program. This includes

the gprof [Grah82] profiling and IPC information. In this study, we compile SPEC2000int benchmarks

for a Pentium-III processor running on the Linux at O3 optimization level. Table 1 shows the execution

time distribution from gprof of program 181.mcf. With the reference input set, the mcf benchmark spends

50% of time in procedure price_out_impl, 37.5% of time on procedure refresh_potential. When the train

input is used, they are also the top two procedures in the profile. However, procedure refresh_potential

now becomes the number one routine, while procedure price_out_impl reduces its execution time

contribution from 50% to 31%. When the test input is used, the profile becomes very different. Now the

top two procedures, price_out_impl and refresh_potential are insignificant, while procedure

primal_bea_mpp and sort_basket become the top ones.

When a reduced input data set is used, we would like to know whether it covers the important part of the

program for the reference runs. In Table 2, we try to correlate procedure profiles among different input

data sets. For example, in the first column, we compare profiles of train input to the reference input. In the

column labeled as 50%, we take the top procedures accounting for 50% of runtime cumulatively from the

train input run, and give the percent of runtime these procedures cover in the reference input run. As

shown in Table 2, Test input sets do not cover procedures very well for the reference run of Mcf, Eon,

Perl, Gap, and Bzip. The procedures accounting for 80% of execution time of test input runs cover only

9.26%, 41.57%, 1.28%, 58.54%, and 53.45% of the reference run, respectively.

In general, train input runs have good procedure coverages. For Gzip, Vpr, Gcc, Mcf, Parser, Gap, and

Twolf, the procedures accounting for 80% of execution time of train input runs cover similar execution

percentages for reference input runs; in Perl, Eon, and Bzip the coverage is less than 50%. The compiler

must be careful when training profiles are used to determine which procedures to optimize for these three

programs. For example, Perl spends about 20% of time on procedure regmatch, but this procedure does

not even show up in the gprof result for the training run. Therefore, using the training profile, the

compiler might not optimize the regmatch procedure.

 Table 2. Procedure coverage from one input set to the other
Table 1. Execution time distribution of 181.mcf

with different input sets Gprof Train vs Ref Test vs Ref Test vs Train
Procedure Name Ref Input Train Input Test Input 50% 80% 90% 50% 80% 90% 50% 80% 90%
price_out_impl 50.29% 31.06% 3.49% Gzip 71.00 87.18 93.30 71.00 85.83 91.95 51.19 72.97 86.00
refresh_potential 37.54% 39.24% 8.72% Vpr 29.65 73.61 83.58 55.19 78.20 86.06 59.75 84.55 92.31
primal_bea_mpp 8.47% 19.14% 54.65% GCC 64.45 84.86 91.04 66.15 85.24 90.82 55.89 76.91 86.99
replace_weaker_arc 1.09% 1.99% 0.00% MCF 37.64 88.06 96.56 8.49 9.26 97.74 19.30 21.89 92.79
sort_basket 0.76% 2.57% 18.02% Crafty 42.20 67.88 78.38 41.58 67.36 77.77 48.72 78.22 88.33

Parser 47.56 80.41 88.76 28.05 62.11 73.45 36.40 66.70 76.03
Eon 41.57 45.28 47.25 19.99 41.57 41.57 20.51 56.89 64.30
Perl 25.37 29.71 33.10 0.00 1.28 1.28 0.00 7.27 7.27
Gap 48.63 85.02 95.39 44.38 58.54 65.84 43.13 63.65 70.80
Vortex 33.86 53.56 68.87 37.85 65.80 71.58 48.50 73.50 87.99
Bzip2 5.57 49.29 59.03 27.27 53.45 67.93 24.56 40.79 93.34
Twolf 46.43 79.53 90.49 44.40 74.25 83.85 49.29 74.70 84.66

2.2 IPC comparison

In this section, we measure the IPC (Instruction Per Cycle) for each benchmark program using all three

different input data sets. Several SPEC2000int programs, such as gzip, vpr, mcf, bzip and twolf, spend

90% of execution time on a very small number of procedures (less than 10), so the relative procedure

coverage reported in the previous section is very high. However, it is not clear whether the execution

behavior inside each procedure is similar under different input data sets. In this section, we examine the

IPC numbers and in the next two sections, we sample the execution paths for a more detailed comparison.

We use hardware performance counters to report IPC numbers. The same set of benchmarks is compiled

for Itanium using a beta version of the Electron compiler from Intel at O2 optimization level. For

programs that have multiple reference input files, we average the IPC for each individual runs.

Figure 1 shows that the IPC numbers of vpr, mcf, perlmark, and twolf change significantly from one input

set to the other. Consider vpr, for example, the IPC for the test run is about two times the IPC of the

reference input. Mcf has an IPC number using test run more than three times the IPC using the reference

input. In these benchmarks, different input sets exposed very different performance characteristics. For

programs that have similar IPC numbers, such as gcc, gap, and gzip, it is not guaranteed that different

input sets for such programs exercise the same execution paths and exhibit the same cache behavior. We

will examine the sampled execution paths of each program to verify their behavior in following sections.

3 Using Branch Trace Buffer to examine frequently executed paths

The Itanium processor defines and supports a rich set of performance monitoring features that can be used

to characterize workload and to profile application execution [Itan00a, Itan00b]. Itanium has four

performance-counter registers that can be programmed to measure stall cycles in eight different categories

 Figure 1. IPC numbers collected on Itanium for different input data
sets on SPEC200int

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

gzip vpr gcc mcf parser perlmark gap vortex bzip2 twolf
Branchmarks

IP
C

Test
Train
Reference

as well as to count occurrences of over a hundred events. Furthermore, Itanium supports Event Address

Registers (EARs) for both Data and Instruction events as well as an eight-entry Branch Trace Buffer

(BTB). The Instruction EAR can capture the addresses of instructions that trigger I-cache or ITLB misses.

The Data EAR can capture the addresses of load instructions that cause D-cache or DTLB misses together

with the target addresses of these loads. The Branch Trace Buffer is an 8-entry circular buffer that can

capture information on the most recent branch instructions and their outcomes. These performance-

monitoring features enable us to gain a detailed understanding of the dynamic execution behavior of the

running application. Since each retired branch instruction that is recorded in the Branch Trace buffer may

take up to two entries, one entry for the address of the branch instruction and another entry for the address

of the branch target, we can program the Branch Trace Buffer to capture the most recent four taken

branch instructions for each sample.

A profiling tool that utilizes the performance monitoring features, called Itanium Profiling Tool (or IPT),

has been developed on Itanium running 64-bit Linux in the MRL of Intel. IPT required a customized

performance monitor device driver (PMU driver) that runs as part of the Linux. IPT supports various

modes of profiling on a running application, including the measurement of stall accounting, the counting

of all performance events supported by the Itanium processors, and the collection of samples on various

events. The IPT program interacts with the PMU driver to configure the performance monitoring registers

and to receive profiling or sampling data from the PMU driver and store them in a profiling file.

To sample execution paths for this study, we used IPT to collect branch trace information for SPEC2000

integer benchmarks. We configure the Branch Trace Buffer to capture only the taken branches regardless

of their branch prediction outcomes. While running the integer benchmarks with reference input, one

branch trace sample was taken every one million cycles and every ten thousand D1 cache misses. For test

and training input, one branch trace sample was taken for every ten thousands clock cycles and every one

hundred D1 misses. This is because we try to maintain roughly the same number of samples between

reference, test, and training runs. The sampling rates used is faster than the sampling rate usually used by

gprof in all cases. Although a faster sample rate will obtain more unique execution paths, the most

frequently sampled execution paths of each program remain the same as with the slower sampling rate.

Since this study focus on the most frequently executed paths, we do not collect data on various sampling

rates. Each branch trace sample was captured by the IPT program and stored to disk for offline

processing. Offline, all branch trace samples were sorted to count the number of times each branch trace

path was executed.

4 Execution Path Analysis for Different Input Sets

As we stated earlier, even if a program has similar procedure coverage and IPC numbers for different

input data sets, the execution paths exercised by the different input sets may be different. If different

execution paths are exercised under different input sets, using one input set may not reliably predict the

performance of other runs. For the same reason, aggressive PBO based on one input set may not be

effective for other runs.

We use the IPT tool described in Section 3 to study the frequent execution paths for each program under

different input sets. We first select the top three frequently executed paths from the reference input runs.

For each path, we report its percentage in the total sampled paths. For example, as shown in Figure 2, the

number 1 path of Gzip accounts for 27.69% of total sampled paths. We also report their respective

percentage for test and train input runs. The number 1 path selected from the reference run of Gzip

accounts for only 0.26% from all the sampled paths for the test run, and 20.71% for the train input.

Figure 2 shows that the top three paths of Gcc using reference input account for about 30% of execution

time. This seems to contradict with the common sense that Gcc tends to have a very flat profile. The hot

execution paths come from the memcpy and the memset library routines. These two routines also account

for 30% of execution time on both Pentium-III based and Sun Ultra SparcIIe based systems, using gprof

with reference input.

In Figure 2, we can see that some important execution paths for the reference runs are insignificant for the

train or the test runs. From the high-level comparisons in Section 2, we may believe Crafty, Gcc and Gap

can reliably take advantage of reduced input data sets. However, Figure 2 shows that there are substantial

variations on the relative importance of the frequently executed paths for these three programs.

Figure 2. Comparison of frequent execution paths using different input sets

0

10

20

30

40

50

60

70

80

90

gz
ip_

ref

gz
ip_

tes
t

gz
ip_

tra
in

vp
r_r

ef

vp
r_t

es
t

vp
r_t

rai
n

gc
c_r

ef

gc
c_t

est

gc
c_t

rai
n

mcf_
ref

mcf_
tes

t

mcf_
tra

in

cra
fty_

ref

cra
fty_

tes
t

cra
fty_

tra
in

pa
rse

r_r
ef

pa
rse

r_t
es

t

pa
rse

r_t
rai

n

Eo
n_

ref

Eon
_te

st

Eon
_tr

ain

pe
rl_

ref

pe
rf_

tes
t

pe
rf_

tra
in

ga
p_

ref

ga
p_

tes
t

ga
p_

tra
in

vo
rte

x_
ref

vo
rte

x_
tes

t

vo
rte

x_
tra

in

bz
ip2

_re
f

bz
ip2

_te
st

bz
ip2

_tr
ain

two
lf_

ref

tw
olf

_te
st

two
lf_

tra
in

Benchmarks & Input sets

%
 o

f
s
a
m

p
le

d
 p

a
th

s

Path-1 Path-2 Path-3

Table 3. Coverage of execution paths using one input run to predict the other
CPU Train Vs Ref Test Vs Ref Test Vs Train

50% 80% 90% 50% 80% 90% 50% 80% 90%
Gzip 59.55 76.82 89.32 16.21 22.77 28.05 28.11 39.28 44.08
Vpr 48.01 64.89 69.89 47.01 80.80 92.06 65.70 91.10 96.09
GCC 69.69 85.99 91.32 76.65 88.70 91.59 64.46 84.08 88.77
MCF 66.16 91.72 96.59 2.83 18.79 18.86 9.11 26.18 26.69
Crafty 34.17 51.70 59.33 26.45 38.55 44.38 36.74 54.85 60.03
Parser 50.93 81.19 90.32 27.79 76.62 89.39 26.20 77.57 89.53
Eon 47.82 76.93 88.82 48.84 76.76 84.97 51.83 81.15 89.61
Perl 47.25 68.32 76.14 - - - - - -
Gap 34.96 67.09 75.70 34.56 42.78 52.76 39.93 73.32 82.84
Vortex 41.40 80.61 89.03 63.21 84.17 91.66 44.99 75.00 87.03
Bzip2 26.99 52.24 72.07 26.99 44.59 56.58 36.41 69.16 82.02
Twolf 45.19 79.34 90.44 42.07 71.71 79.25 45.03 71.58 77.64

Readers may wonder how important the relative order and their respective weight for those frequently

executed paths are. For example, if for training input, path-1 accounts for 40%, and path-2 accounts for

10% of the execution time, and if the distribution becomes path-1, 10% and path-2, 40% for the reference

input, would it make a big difference in PBO optimization? The answer depends on how the profile is

actually used in optimization. If the optimizer uses the profiles to select all important paths, the relative

order may not matter much. Eventually, both path-1 and path-2 will be selected and optimized. However,

if PBO takes weight into account, it may decide to optimize only the number 1 path (due to compile time

consideration), the outcome could be very different. Furthermore, when using small input sets for

performance projection in simulations, the relative weight of different execution paths do make a

difference.

The compiler may choose to take the top 80% of execution paths of the profile as optimization candidates.

We are interested to know how much execution time these selected candidates may cover the run time of

the full reference input run. Table 3 shows the possible coverage. For example, if we take the top 90%

(accumulative) of execution paths from the profile collected with the Test input on Gzip, these paths may

cover only 28.5% of the run time for the reference input run. In Table 3, we can see more than half of the

benchmarks have very poor coverage if Test profile is used. In general, profiles using train input sets have

better coverage than the test input sets.

5 Comparison of Frequent Execution Paths for Data Cache misses

5.1 Path coverage analysis

Figure 3 compares frequent paths leading to data cache misses. For programs without many data cache

misses, it is not important to study such paths. However, since many SPEC2000int programs have a high

D1-cache miss rate running on Itanium, it is important to understand whether such paths can be predicted

using profiles generated from smaller input data sets. Figure 3 does not contain all the programs-- some

programs with insufficient data cache miss samples were not included.

Figure 3 shows variations of such execution paths are far greater than the variations in Figure 2. For

example, the path that accounts for the highest data cache misses in Vortex (responsible for 61.85% of

D1-cache misses) does not even show up in the train input run (it covers 0.0% of sampled execution paths

for data cache misses). Figure 3 shows that the test input is almost useless in predicting frequent D-cache

miss paths except for Crafty. The train input can be used to predict data cache miss paths for Vpr and

Parser. It may also capture frequent data cache miss paths for Gcc, Mcf, with substantially different

weights on the paths. Train inputs predict data cache miss paths poorly for Gap, Vortex and Bzip2.

Table 4 is similar to Table 3. The execution path coverage in Table 4 is in general lower than the

coverage in Table 3. In particular, if the threshold is 50%, the prediction for reference run can be very

poor. Table 4 shows test data sets can capture many frequent execution paths leading to data cache misses

for Parser. However, from Figure 3, we have observed that the top three paths for data cache misses in

Parser do not stand out during test data set runs. This shows a difference of using test data sets for PBO

and for reducing simulation time. If the PBO compiler takes 90% of observed paths from one run to

optimize for the other run, the relative weights of each path become less important. As long as the

frequent executed paths are optimized, PBO has achieved its goal. However, the relative weights and

order of such paths are important when simulation time is considered.

5.2 Small Vs large input data sets

From Table 4, we might conclude that for data cache profiling, using small input data sets may

misrepresent the projected performance. It seems like the compiler should avoid using small input data

sets to collect data cache miss profiles because reduced memory accesses are less likely to generate

frequent data cache misses. However, the remaining questions are a) is it practical to use large input data

sets to collect profiles for PBO and b) Even if a large input data set is used for profiling, can it reliably

identify execution paths to the data cache misses for the other input set. For question (a), we shall leave it

to software vendors to decide how much profiling overhead they can tolerate. For question (b), we looked

at the predictability of using one reference input to predict for future runs with different input sets. Note

that in this case both input data sets are from reference sets, not from the small data sets.

For those programs that incur frequent data cache misses on the Itanium and have multiple reference input

files, we compare their most frequent paths leading to data cache misses in Figure 4. It shows that even if

the full reference input is used to collect data cache miss path profiles, the variation is still large from one

input to another. The number one execution path to data cache misses in Vortex account for 71.5% of all

Figure 3. Comparison of frequent execution paths leading to data
cache misses using different input sets

0

10

20

30

40

50

60

70

80

90

100

Vpr
_r

ef

Vpr
_t
es

t

Vpr
_t
ra

in

G
CC_

re
f

G
CC_te

st

G
C
C_

tra
in

M
CF_r

ef

M
CF_t

es
t

M
C
F_t

ra
in

Cra
fty

_re
f

Cra
fty

_te
st

Cra
fty

_tra
in

Par
se

r_
re
f

Par
se

r_
te
st

Par
se

r_
tra

in

G
ap

_r
ef

G
ap

_t
es

t

G
ap

_t
ra

in

Vor
te
x_

re
f

Vor
te
x_

te
st

Vor
te
x_

tra
in

Bzip
2_r

ef

Bz
ip2

_t
es

t

Bzip
2_t

ra
in

Benchmarks & input sets

%
 o

f
s

a
m

p
le

d
 p

a
th

s

Path-3

Path-2

Path-1

Table 4. Coverage of execution paths leading to data cache misses using one input run to predict the other
D1 Train Vs Ref Test Vs Ref Test Vs Train

50% 80% 90% 50% 80% 90% 50% 80% 90%
Vpr 37.02 76.93 78.17 20.23 20.23 21.47 27.85 27.85 35.92
GCC 15.06 73.92 92.12 0.00 0.00 0.00 0.02 0.06 0.07
MCF 82.70 85.33 93.51 2.18 85.44 86.07 25.83 84.12 88.29
Crafty 36.72 66.81 79.64 36.72 59.29 68.14 40.09 74.36 83.36
Parser 54.07 82.56 91.85 60.83 81.10 88.29 58.38 81.37 88.37
Gap 17.96 55.21 70.06 16.35 20.80 43.53 38.01 71.69 81.24
Vortex 16.95 25.37 28.61 13.84 24.18 30.88 35.07 71.84 83.78
Bzip2 14.44 31.86 51.97 14.44 29.97 35.84 50.21 65.77 73.25

sampled paths when the input lendian1.raw is used. However, this path does not appear when input

lendian2.raw and lendian3.raw are used. On the other hand, a path that accounts for 16% of the sampled

paths for input lendian2.raw and lendian3.raw, contributes only 4% when lendian1.raw is used. Similar

results can be found for Bzip2 and Gcc. Using different input sets, no matter whether they are reduced

size or regular size, may not reliably predict the paths leading to data cache misses for Spec2000int

benchmarks.

6 Performance Impact of Different Profiles on Profile Based Optimization

Although our study indicates one input set does not always accurately predict the program behavior for

another, it is not necessarily a problem in PBO because a) the compiler may select a set of inputs with

different behaviors to generate profiles; b) some PBO transformations are less aggressive so that they

depend less on the execution path or memory access behavior. In this section, we evaluate the

performance impact of PBO based on profiles generated from the test, the train and the reference input

sets. The experiment was conducted on the Itanium processor, where PBO is regarded as very important.

We compiled Spec2000int programs, using the Intel C/C++ compiler, on the RedHat 7.1 Linux. We used

the performance of programs compiled at O2 as the base. We then compiled our benchmarks using IPO

(Inter-Procedural Optimization) and PGO (Profile Guided Optimization, in Intel’s term). Note that PGO

is the same as PBO, so we call it PBO here. When compiled with IPO/PBO, we use profiles collected

from test, train and reference input sets. The performance relative to the base performance is reported in

Table 5. Performance of PBO on Itanium using different
profiles

Program IPO IPO+PBO
(test)

IPO+PBO
(train)

IPO+PBO
(reference)

164.gzip 1.07 1.19 1.31 1.29

175.vpr 1.15 1.19 1.19 1.19

181.mcf 1.03 1.04 1.03 1.03

186.crafty 1.25 1.29 1.3 1.32

197.parser 1.08 1.11 1.11 1.11

254.gap 1.08 1.2 1.25 1.28

255.vortex 1.1 1.3 1.36 1.35

256.bzip 1.18 1.15 1.17 1.18

300.twolf 1.05 1.1 1.14 1.15

Average 1.11 1.17 1.21 1.21

Figure 4. Frequent execution paths to data cache misses
comparison using different reference input files.

0

10

20

30

40

50

60

70

80

90

100

vo
rte

x_
len

dia
n1

.ra
w

vo
rte

x_
len

dia
n2

.ra
w

vo
rte

x_
len

dia
n3

.ra
w

bz
ip_g

ra
ph

ic

bz
ip_

so
urc

e

gc
c_

Int
eg

rate.
i

gc
c_

ex
pr

.i

gc
c_

20
0.i

Benchmarks & input sets

%
 o

f s
am

pl
ed

 p
at

hs

Path-3

Path-2

Path-1

Table 5. All performance reported in Table 5 are relative to the base performance. As shown in Table 5,

Gzip, Gap, Vortex, Bzip and Twolf can benefit from train profiles. This is no surprise; because Table 3

shows that train profiles cover the runtime of reference input better than test profiles on the

aforementioned programs. Table 3 also shows that using profiles collected from reference inputs in PBO

does not increase performance much. One thing worth noting is that the test profile of Mcf does not

represent reference input at all. However, there is no performance difference for Mcf when more accurate

profiles are used. This is because the performance of Mcf is dominated by several link-list chasing loops

that have intensive data cache misses. Several existing effective PBO transformations would not improve

those loops. However, if cache profile guided prefetching is implemented, using train profiles may expose

such optimization opportunities.

Table 5 shows PBO can benefit from better profiles. The performance gain from using better profiles is

not very significant, except for Gzip, which could gain 10% of performance if the train profile is used

instead of the test profile. The performance impact of different profiles is not as significant as we

expected. This is because Vpr, Mcf, Parser, Gap, Vortex and Bzip suffer significantly from frequent data

cache misses on Itanium. When the performance is dominated by data cache misses, non-cache related

PBO would not change performance much. When cache profile guided optimizations are adopted by

compilers, different profiles would have a higher impact on performance.

7 Summary and Conclusion

It has been a common practice to use smaller input sets to estimate the performance of a benchmark or to

generate profiles for PBO. In this paper, we look at how reliable this approach is. We have studied the

high level metrics such as IPC and procedure level profiles and the low level measurement such as

execution paths exercised by various input sets on SPEC2000int programs.

Our study indicates that the test input sets are not suitable to be used for simulation because they do not

have an execution profile similar to the reference input runs. The train input is far better than the test data

sets at maintaining similar profiles. However, there are significant differences between train profiles and

reference profiles for Perl, Eon, Bzip2, and Vortex. We recommend cautiousness in using train input to

project simulation performance for Vpr, Mcf, Gap, Gcc and Perl. We have observed significant variations

in respective weights of those frequently executed paths using different input sets. Such relative weights

could be critical when aggressive PBO is used. Profiles from train input could be reliable when

predicting branch directions for other runs, but they could be misleading if the relative weights are used to

guide optimizations.

A common practice has been adopted in PBO is to merge profiles from several different training input

sets. However, most SPEC2000int programs have only one training input (only Perl and Eon have more

than one training input files). In general, identifying representative small input sets for an application is

not easy, even ISVs (Independent Software Vendors) have difficulties identifying representative sets. We

have evaluated the impact of different profiles on PBO performance using the Itanium processor. While

more accurate profiles lead to higher performance, the overall performance impact has not been shown to

be very significant. Our study shows that smaller data sets do not predict frequent data cache miss paths

in the reference input runs. We have also shown that data cache miss paths may not be predicted using a

different reference input set. Since the profiled execution paths using small data sets often carry weights

significantly different from paths in full runs, and since data cache miss paths are difficult to predict using

different input sets, it would be a challenge to use profiles from small inputs to guide cache prefetching

related optimizations.

8 References

[Ayer98] Andrew Ayers, Stuart deJong, John Peyton and Richard Schooler; “Scalable Cross-module
Optimization”, Proceedings of the ACM SIGPLAN '98 conference on Programming language design and
implementation, 1998.
 [Burg97] Burger, D., and T. Austin, “The SimpleScalar Tool Set, Version 2.0” Technical report 1342,
Computer Sciences Department, University of Wisconsin Madison, June 1997.
[Cald99] B. Calder, P. Feller, and A. Eustace, “Value Profiling and Optimization”, Jounal of Instruction
Level Parallelism, March, 1999
[Cald98] B. Calder, C. Krintz, S. John, and T. Austin, “Cache-conscious data placement”, In Proceedings
of the the 8th nternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS VIII) Oct. 1998.
[Cohn98] Robert S. Cohn, David W. Goodwin, P. Geoffrey Lowney, “Optimizing Alpha Executables on
Windows NT with Spike”, Digital Technical Journal, Vo l 9 No 4, June, 1998
[Fish92] Fisher J. A., and S. Freudenberger, “Predicting Conditional Branch Directions From Previous
Runs of a Program,” Proceedings of the 5th International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct., 1992
[Grah82] Graham, S. L., Pb.B. Kessler, M.K. McKusick, “gprof: A Call Graph Execution Profiler”,
Proceedings of the SIGPLAN ’82 Symposium on Compiler Construction, 1982.
[Henn2000] Henning, John L., “SPEC CPU2000: Measuring CPU Performance in the New Millennium,”
IEEE Computer, Vol. 33, No. 7, July 2000.
[Holl96] Anne M. Holler “Optimization for a Superscalar Out-of-Order Machine”, Proceedings of the
29th annual IEEE/ACM international symposium on Microarchitecture, 1996.
[Itan00a] Intel Itanium Architecture Software Developer’s Manual Vol. 4 rev.1.1: Itanium Processor
Programmer’s Guide. Intel Corp. July 2000.
[Itan00b] Intel Itanium Architecture Software Developer's Manual: Specification Update. Intel Corp.
August 2001.
[Rami99] Alex Ramirez, Josep-L. Larriba-Pey, Carlos Navarro, Josep Torrellas, and Mateo Valero,
“Software Trace Cache”, 1999 ACM International Conference on Supercomputing (ICS), June 1999.
[Yung96] Yung Robert, “Design Decisions Influencing the UltraSPARC Instruction Fetch Architecture,”
Proceedings of the 29th annual IEEE/ACM international symposium on Microarchitecture, 1996

Quantitative Evaluation of the Register Stack Engine and

Optimizations for Future Itanium Processors

R. David Weldon, Steven S. Chang, Hong Wang

Gerolf Hoflehner, Perry Wang, Dan Lavery, and John Shen

Microarchitecture Research, Intel Labs

Intel Corporation

Santa Cara, CA 95054

Abstract

 This paper examines the efficiency of the register stack
engine (RSE) in the canonical Itanium architecture, and
introduces novel optimization techniques to enhance the
RSE performance. To minimize spills and fills of the
physical register file, optimizations are applied to reduce
internal fragmentation in statically allocated register stack
frames. Through the use of dynamic register usage (DRU)
and dead register value information (DVI), the processor
can dynamically guide allocation and deallocation of
register frames. Consequently, a speculatively allocated
register frame with a dynamically determined frame size
can be much smaller than the statically determined frame
size, thus achieving minimum spills and fills. Using the
register stack engine (RSE) in the canonical Itanium
architecture as the baseline reference, we thoroughly study
and gauge the tradeoffs of the RSE and the proposed
optimizations using a set of SPEC2000int benchmarks built
with differing compiler optimizations. Using a
combination of frame allocation policies using the most
frequent frame size, and using deallocation policies using
dead register information proves to be highly effective. On
average, a 71% improvement in RSE performance via a
reduction of aggregate spills and fills can be achieved.

1. Introduction

 The structure of register files and the organization of the
memory subsystem is a fundamental trade-off in computer
architecture. On one hand, memory latency still dominates
the performance of many applications on modern
processors, despite continued advances in caches. This

problem, in fact, worsens as CPU clock speeds continue to
advance more rapidly than memory access times, and as
the data working sets and complexity of typical
applications increase. Modern compilers incorporate
powerful algorithms for memory disambiguation [1, 2]
and register allocation [3, 4]. One trend in architecting
modern microprocessors has been to expose a large
register file architecturally and enlist the help of advanced
compilers to map the working sets of the applications
primarily into these registers, so as to reduce the number
of load/store operations that can incur long memory access
latency [5, 6, 7]. On the other hand, current trends in
microprocessor design and technology lead to projections
that the access time of a monolithic register file will
become significantly higher than that of other common
core operations, such as integer ALU operations [8]. To
tackle this problem for traditional superscalar processors,
various techniques have been proposed to reorganize the
physical register file either through bank based
partitioning or hierarchy based caching so that the access
time to a small subset of registers can be made faster than
access to the rest of the register file [8, 9, 7]. For these
physical register file organizations, it is performance-
critical to minimize spills and fills between the register
files and memory.

 Unlike most RISC architectures, the Itanium
architecture [5] provides a general register file with 128
registers that are logically partitioned into 32 static
registers, r0-r31, and 96 stacked registers, r32-r127. The
static registers are globally visible to any procedure, but
the stacked registers, with the exception of registers used
for parameter passing, are only accessible locally within
a procedure. Each procedure has its own variable sized

register stack frame. The architecture enables the
compiler to explicitly specify the register stack frame size
for each procedure. The Register Stack Engine is a
processor state machine that maps a register stack frame
onto the physical register file and copies (spills/fills)
values to and from the register stack. Spilled register
values are copied to memory, formally called the backing
store. Fills occur when a register is used after having
been spilled. The register value is then copied from the
backing store into the register file.

 This work is focused on the examining the relationship
between RSE traffic (spills/fills) and the dynamic
utilization of registers in the register frames. We first
quantify the problem of internal fragmentation in
allocated frames, and then propose a spectrum of
optimizations that use dynamic information to improve the
performance of the RSE. In essence, these optimizations
transform the abstraction of local register frame
management from a stack-based model into a much more
flexible heap-based model, resembling traditional memory
management mechanisms like garbage collection [10, 11].

 Together with the baseline canonical RSE design, several
RSE optimizations will be quantitatively evaluated using
the workloads from a set of SPECint2000 Itanium binaries
that are used for the official SPECint2000 rating in both
base and peak performance categories [14, 15]. In addition,
to help gauge RSE performance impact by both compiler
optimizations and RSE optimizations, we also use a special
set of peak binaries that are produced without loop
unrolling optimization, so as to mimic binaries with
lessened register pressure. We introduce techniques that
perform dynamic register usage (DRU) based allocation,
and deallocation based on dead register information, also
commonly called dead value information, (DVI). For the
benchmarks under consideration, the results show that
these techniques can be highly effective in reducing the
total register spills and fills by at least 30% over the
baseline RSE. In particular, the best combination is to
employ both most frequent use DRU based allocation and
DVI based deallocation. On average, a 71% improvement
in spill/fill reduction can be achieved over the baseline
RSE.

 The remainder of the paper is organized as follows.
Section 2 reviews past research in register renaming for
large register files. Section 3 presents background on
Itanium RSE and illustrates with examples the potential
problems associated with the static register frame
management without dynamic usage feedback. Section 3
also provides motivation for optimizing the RSE. Section 4
explains a design space for optimizing the RSE using
microarchitecture techniques and depicts 9 models with
differing tradeoffs. Section 5 outlines the evaluation

methodology and provides detailed performance analysis
of these models in comparison to the canonical RSE.
Section 6 concludes the paper.

2. Related Work

 Register allocation, register renaming, and design
issues regarding organization and management of large
register files are closely related topics that have been
extensively studied [8, 7, 9, 6, 17, 18, 19]. A detailed
survey of these issues in modern processor designs can be
found in [16].

 Recently, Postiff et al [7] have proposed a register file
caching scheme for implementing a large logical register
file. Somewhat resembling the RSE in Itanium
architecture, the design separates the logical register file
from the physical register file and uses a modified form
of register renaming to make the register cache easy to
implement. The physical register file acts as a cache for
the logical register file, which becomes the backing store.
Some research [20, 27] also considered early deallocation
of physical registers using dead register value
information (DVI) to exploit the fact that after the last
read of a register, that register becomes dead and can be
reclaimed.

 Unlike architectures considered in past research, the
RSE in the Itanium architecture represents an infinitely
large logical register file, which acts like a 96-entry
cache for the top of the register stack. In the canonical
Itanium processors such as the first generation Itanium
products, the physical register stack file is implemented
exactly as the architectural/virtual stack register file, and
the RSE effectively guarantees a 1-to-1 correspondence
between any logical register frame on top of the register
stack and a physical register frame in the stacked
registers. Both frames are of the same size, even if not all
registers in a logical frame are used.

 To our knowledge, this paper is the first work to
thoroughly study the dynamic behavior of the Itanium
RSE. In particular, the focus is on examining the
dynamic usage of registers within the register frames
that are explicitly managed by compiler (i.e. via alloc
instructions) and quantifying the number of spills/fills
incurred by the RSE. Furthermore, our work sheds light
on significant benefits in using dynamic usage
information to guide optimal register frame utilization.
Finally, this paper introduces new insights on
transforming the canonical stack-based RSE
management model to a more flexible heap based
management model, which enables more scalable
physical implementations of the RSE in future Itanium
processors.

3 Overview and Background on the RSE

3.1 Register Stack Frames

 In the Itanium architecture, each procedure can have its
own variable-sized (up to 96) register stack frame. A
compiler’s code generator uses the alloc instruction [5], to
explicitly specify a procedure's register stack frame
(Figure 1). The instruction allows for up to 8 incoming
parameters (in), up to 8 outgoing parameters (out), the
number of locally allocated stacked registers (local) and
the number of rotating registers (rot) used in software-
pipelined loops. The total number of registers in the
register stack frame for a procedure is in+local+out <= 96.

 The parameter passing registers for the caller and the
callee (foo and bar in Figure 1) overlap. It is the task of
the register stack engine (RSE) to map a register stack
frame (architectural registers) to the stacked registers in
the physical register file (physical registers). This
mapping is transparent to the application software and the
compiler. For example, in Figure 1, both procedures, foo()
and bar(), access their first incoming parameter register as
r32, but the RSE maps them to different physical registers,
namely, r32 and r38, respectively. Note: without loss of
clarity, for simplicity in description, we will use the same
notation to denote both physical and architectural
registers.

Figure 1. Alloc instruction and register stack frame

3.2 Register Spilling and Backing Store

 The Itanium RSE manages the 96 architecturally visible
stacked registers in the physical register file. From its
point of the view, these stacked registers represent the top
of the register stack and form a circular buffer. Upon
entering a procedure call, when the callee allocates a new
register stack frame, the RSE maps the frame (to ensure
proper register renaming) to the register file. If the new
frame does not fit, the RSE will spill registers allocated to

a previous frame to the backing store, a memory area
representing the logical register stack for the program. At
procedure return, the RSE restores the caller's frame. If
necessary, the RSE restores the registers by fills from the
backing store. For example, assume four procedures A,
B, C and D with A calling B, B calling C, and C calling
D. If the register file does not have enough free registers
available for the register stack frame of procedure D, the
RSE spills registers starting with the stack frame of
procedure A, to the backing store. When procedure B
returns, the RSE will restore the original register stack
frame of procedure A, filling A’s registers from the
backing store that were previously spilled.

 Ultimately, register spilling is due to a deep call graph
and/or inefficient utilization of allocated frames. One
focus of this paper is to minimize internal fragmentation
in allocated frames. To highlight the existence of internal
fragmentation, two scenarios are presented below.

3.3 Imbalanced Paths

Example 1. Imbalanced Paths

 Example shows two paths within a procedure with
imbalanced register demands. Depending on the dynamic
control flow, on one path, only 10 registers are needed,
while on the other path, 70 are needed. Ideally, one
should allocate 70 stack registers only when the path
with high register demand is executed at run-time.
Otherwise, only 10 registers should be allocated. If the
path with low register demand is a frequently taken path,
the dynamic register stack allocation could often avoid
the 60-register internal fragmentation all together. This
savings can thus help minimize register-memory traffic,
as 60 registers would then be free for other procedures.

3.4. Nested Procedure Calls

 Example 2 shows the potential to reduce the combined
register stack size across procedure calls. Assuming the
register stack frame size for foo is 40 registers and 30 of
these registers are dead when foo calls bar(), at this
point, only 10 registers are needed on the register stack.

path with high
register demand

path with
low register demand

Use 10 Use 70

Instruction: alloc <target_reg>=ar.pfs, in, local, out, rot
foo: r34=alloc ar.pfs, 2, 4, 2, 0
bar: r34=alloc ar.pfs, 2, 1, 0, 0

r32 r33 r34 r35 r36 r37 r38 r39

 r32 r33 r34

r32 r33 r34 r35 r36 r37 r38 r39 r40 r41 …

foo’s stack frame

bar’s stack frame

Physical
register file

Callee bar() could use the 30 dead registers of foo,
instead of trying to find other free registers for a new
frame. The histogram in Example 2 shows the potential
dynamic register stack frame sizes for both procedures
after stack frame sizes get dynamically adapted. Overall,
no more than 40 registers are used. Without dynamic
adaptation, foo() would allocate 40 registers, and bar()
would allocate 20 additional registers for a total of 60. It
is clear that without optimization, this behavior will
quickly result in RSE spills.

Example 2. Shrinking the register stack before calls

3.5 Motivation of RSE Optimizations

 Intuitively, in order to minimize RSE traffic, it is
important to track and use dynamic frame sizes to allocate
register frames so as to reduce internal fragmentation. In
addition, it is important to relinquish dead registers as
soon as possible so that they can be reused by the ensuing
functions. To quantify the problem and seek effective
solutions, we will evaluate a spectrum of RSE
optimization schemes starting in the next section.

4 RSE Optimizations

 To help define a set of RSE optimizations that employ
different kinds of dynamic information, we first introduce
two orthogonal types of dynamic information.

4.1 Dynamic Register Usage (DRU) vs Dead
Register Information (DVI)

 For each function, with respect to the static frame size
specified in alloc, we track the total of registers that are
actually used during the lifetime of the function’s
execution. This information represents the dynamic
frame size, which is equal to or less than the static frame
size. An allocation policy using this dynamic frame size
information will be denoted as a dynamic register usage
(DRU) policy.

 A local register used in a function, is defined as “dead”
after the last instruction that reads this register in this
function is encountered. A dead register can be reclaimed
and reused for future allocation and thus shrink the
current register frame. A deallocation policy that can
allow dead register relinquishment is called a dead
register information policy. Such information is exactly
the same as dead value information, i.e. DVI as discussed
in [21]. Without loss of clarity, we will use dead register
information and DVI interchangeably.

4.2 RSE Models

 Table 1 summarizes the 9 models studied in this paper.
Except for the baseline RSE (Simple model), all models
use profile-based dynamic information on DRU or DVI,
and non-overlapping frames between caller and callee is
assumed. Therefore both frames effectively represent the
parameter passing registers redundantly. The tradeoff
between flexibility and redundancy will be further
quantified as we cross-examine these optimizations.

4.2.1 Baseline RSE Model
 Simple: This corresponds to the default Itanium RSE
model that is implemented in recent Intel Itanium
processor products, and thus is used as the baseline for
this study. Frames are allocated as the alloc instruction
is executed at the beginning of a function. The number of
registers allocated is the same as the frame size specified
in the alloc instruction. All registers in the frame are
relinquished together upon return from the function.
Parameter passing is achieved via the default mechanism
where caller’s output registers overlap callee’s input
registers.

4.2.2 RSE Models Exploiting DRU Only
 Max Use: For every function, the dynamic register
usage for each dynamic instance of this function is
tracked, and the maximum number of registers used over
all instances of this function is recorded as profile
feedback. The code is then re-executed and the profiled

R e g i s t e r S t a c k S i z e

0

10

2 0

3 0

4 0

5 0

1 2 3 4

Alloc 20 Bar:

Foo: Alloc 40 Alloc 20 Alloc 10

Call Bar()

frame size for this function is always used to allocate
register frame for each dynamic instance of this function.

Name
Use

Alloc
DRU
Size

DVI
When
Free

Overlap
Frame

Simple Only N/A No Return Yes

Max +Hint Max No Return No

MFU +Hint MFU No Return No

Best Fit +Hint Exact No Return No

Simple Only N/A Yes L+R No

Max +Hint Max Yes L+R No

MFU +Hint MFU Yes L+R No

Best Fit +Hint Exact Yes L+R No

Ideal No First Yes L+R No

 Table 1. RSE Optimizations: Shaded = DVI, L+R =
Last use and on Return

 Most-frequent-fit Use (MFU): For every function, for
all of its dynamic instances, the most frequently recurring
frame size is recorded as DRU profile feedback. The code
is then re-executed. For each dynamic instance of this
function, the profiled frame size is always used to allocate
the dynamic frame. If more registers are required when
the function is executed, additional registers will be
reallocated on demand.

 Best Fit: For each dynamic instance of a function, the
total number of registers used by every dynamic instance
of the function is recorded into a history. During the re-
execution of the code, the history information is used as
oracle knowledge to allocate the exact number of
registers that will be used by any distinct dynamic
instance of the function.

4.2.3 RSE Models Exploiting DVI only
 The Simple DVI model is the baseline model without
overlapping frames, and with profile based DVI
information enabled. In other words, DVI information is
used to deallocate dead registers just-in-time so as to allow
the current frame to shrink in size even before the function
returns.

4.2.4 RSE Models Exploiting both DRU and DVI
 Max Use DVI, Most-frequent-fit Use DVI and Best Fit
DVI correspond to the respective allocation policies
described in section 4.2.2. DVI information is used in
these RSE schemes to deallocate dead registers just-in-
time so as to allow the current frame to shrink in size even
before the function returns.

 Ideal DVI : for every register used in every dynamic
instance of a function, information about this register’s
first use and last use are recorded as profile feedback.
The code is then re-executed. Throughout execution of
any dynamic function instance, a local register will not
be allocated until its first use, thus growing the current
register frame on demand. Similarly, once an instruction
performs the last use of the register, this register is
relinquished and the current frame is immediately
shrunk. This register management model is demand-
driven and resembles how physical registers are allocated
and deallocated in the renamers of most out-of-order
superscalar processors [16].

 In this model, the entire physical register file becomes
a heap that is used for allocation at individual register
granularity. It is important to point out that Best-fit-DVI
differs from Ideal-DVI in that, the former allocates all
registers that will be used by the function at the
beginning of the function call, while the latter starts the
function with a 0-sized frame and only adds new
registers onto the frame upon use of the register.

5. Experiments and Performance Evaluations

5.1 Simulation Environment and Workloads

 To quantify tradeoffs of various RSE optimizations,
detailed functional models of these RSE schemes are
implemented in SMTSIM/IPFSim, a research,
performance-modeling environment for Itanium family
processors. It is adapted from the original SMTSIM [22]
to Intel simulation infrastructure [23]. We use the
number of spills and fills as the metric to gauge and
compare effectiveness of RSE models. In an on-going
work (though beyond the scope of this paper), we are
using a cycle accurate processor model to further
investigate the time cost of the RSE fills and spills and
their impact to the performance of a given pipeline
design in terms of execution time.

 The workloads are selected from the SPEC2000int [14]
and Olden suite [24]. The binaries are produced by
Intel’s production compiler Electron [12, 13] and they
were used in the official SPECint2000 rating in both
base and peak performance categories [15]. The
SPEC2000int binaries are all evaluated for the first 2
billion instructions of execution. For Olden benchmarks,
both health and mst are evaluated using the entire
program execution, each with total instruction count at
around 310 million instructions.

5.2 Performance Analysis

 Figure 2 depicts the relative performance of all 9 RSE
models. For each benchmark, the left chart compares the
aggregate number of registers that are spilled/filled, while
the right chart illustrates the number of occurrences of
RSE fill/spill events. An event is defined as a necessity to
fill or spill a set of registers from/to the backing store. All
registers that are spilled will subsequently be filled,
however the number of events will often differ. The event
graphs indicate that in general, spill events are more
common than fill events. This is due to the fact that a
given stack frame can have its registers spilled from
several other function calls before any of its registers are
restored. Imagine a situation where function A calls B,
calls C. C then spills 10 of A’s registers. C returns and B
calls D, which allocates 10 more than C, and spills
another 10 of A’s registers. D and B return and A’s
registers are restored (filled). C and D caused 2 spill
events, where A only caused one fill event.

 An In-depth analysis on tradeoffs for the RSE
optimizations will be discussed in the rest of this section.

5.2.1 Max Use
 Except for gcc, all the benchmarks profiled in Figure 2
exhibit worse Max Use performance than Simple. This
behavior reflects the delicate tradeoffs associated with
DRU policy. The inefficiency due to redundant
representation of parameter passing registers in both
caller frame and callee frame can limit gains from
reducing internal fragmentation. We may see significant
performance degradation when the number of output
registers for a given function is large, causing more
redundancy. As with all RSE models, the severity gets
amplified as the call stack grows. Max Use performs well
on gcc, because for several functions, the maximum
frame size is much smaller than the static frame size.
Therefore, the benefit of internal fragmentation
overweighs the disadvantage of non-overlapping frames.

5.2.2 Most-frequent-fit Use (MFU)
 Consistent performance improvement across all
workloads seems to indicate that MFU is likely the best
DRU policy. Not only does it outperform Max Use in
every benchmark, it also outperforms the Simple model
significantly on crafty, gap, gcc, and health. In fact, in the
case of health, a benchmark that incurs frequent nested
calls due to recursion, a 94% improvement can be
achieved.
 Furthermore, MFU outperforms Best Fit in all the
benchmarks except mcf. Please see section 5.3 for an in-
depth analysis of this phenomenon.

 The use of MFU causes more RSE traffic than the
Simple model on gzip, mcf, parser, and mst. Just as with
Max Use, in these cases the gains made by reducing
internal fragmentation did not outweigh the losses
associated with non-overlapping frames. Nonetheless,
MFU is a very attractive allocation policy as it is a
history-based prediction. This implies that a simple value
prediction scheme should suffice to perform such
predictions effectively at run time.

5.2.3 Best Fit.
 Best Fit goes a step farther than Max Use and MFU in
that it allocates exactly the number of registers that will
be used by each function instance. We therefore expect
that in all cases Best Fit will produce fewer spills than
Max Use and MFU. All benchmarks in the Best Fit
model depict a significant decrease in total spills from
Max Use. However as mentioned earlier, the only
benchmark in which Best Fit outperforms MFU is mcf.
See section 5.3 for more details.

 Best Fit allocation will not always outperform the
baseline Simple model, as shown by gzip, mcf, parser,
health, and mst. In those scenarios, the benefit of usage-
based allocation does not outweigh the disadvantage of
non-overlapping frames.

5.2.4 Simple DVI.
 Simple DVI uses the baseline allocation scheme (static
allocation based on frame size encoded in alloc
instructions), and diminishes the current register frame
size after each register’s last use. As with all DVI
models, we expect to see Simple DVI perform well
against the non-DVI based models when the majority of
the used registers have their last use close to the
beginning of their respective functions. In particular,
most input registers are used only once for parameter
passing and right after the first use of these input
parameters, the input registers are effectively dead and
will be deallocated from the frame by DVI policy. So the
redundancy incurred upon heap based frame allocation
can be cut down drastically.

 For gzip, mcf, parser, and mst, the DVI scheme shows
a reduction in RSE traffic over the non-DVI models. The
rest of the benchmarks show that Simple DVI does not
outperform the non-DVI models. This indicates that the
use DVI alone may not be a suitable solution to the
fragmentation problem, and the conjunction of DVI and
DRU should be closely examined.

5.2.5 Max Use DVI.
 As stated before, Max Use is guaranteed to allocate
frames of size less than or equal to that of the Simple
model. Given that Simple DVI and Max Use DVI both
have non-overlapping frames, Max Use DVI should

G ap : T o ta l S p ills N or maliz e d b y B ase line

0 .0 0

0 .2 0

0 .4 0

0 .6 0

0 .8 0

1 .0 0

1 .2 0

1 .4 0

Simple Ma x Us e MFU Bes t Fit S imple
DV I

Ma x Us e
DV I

MFU DV I B es t F it
DV I

Id ea l DV I

RSE M o d e l : 0 - 2 B In s t r . S im p le s p ills = 5 ,67 5 ,58 3

N
or

m
al

iz
ed

 S
pi

lls

G a p: T o ta l F ill an d S p ill E v e n ts N or maliz e d b y B a se line
S pil l E v e n ts

0 .0 0

0 .2 0

0 .4 0

0 .6 0

0 .8 0

1 .0 0

1 .2 0

Simple Ma x
Us e

MFU Be s t Fit S imp le
DV I

Ma x
Us e
DV I

MFU
DV I

B es t F it
DV I

Id e al
DV I

RS E M o d e l: 0 - 2B In str . S im p le S E = 584 ,066
 S im p le F E = 344 ,258

N
o

rm
al

iz
ed

 E
ve

n
ts

S p il l E ve n ts

Fil l E ve n ts

M c f: T o ta l S p ills N o r m a liz e d b y B a s e lin e

0 .0 0

0 .2 0

0 .4 0

0 .6 0

0 .8 0

1 .0 0

1 .2 0

1 .4 0

S im p le M a x
U s e

MF U B e s t F it S im p le
D VI

M a x
U s e
D V I

M F U
D VI

B e s t F i t
D VI

Id e a l
D VI

R S E M o d e l: 0 - 2 B In s tr . S im p le s p ills = 1 0 ,9 4 6 ,6 9 9

N
o

rm
al

iz
ed

 S
p

ill
s

M c f : T o ta l F ill a n d S p ill E v e n ts N o rm a liz e d b y B a s e lin e
S p ill E v e n ts

0 .0 0

0 .5 0

1 .0 0

1 .5 0

2 .0 0

2 .5 0

3 .0 0

S imp le Ma x
Us e

MF U B es t
Fit

S imp le
DV I

Ma x
Us e
D V I

MF U
DV I

B e s t
Fit DV I

Id ea l
DV I

R S E M o d e l : 0 - 2 B In s t r . S im p le S E = 81 2 ,62 6
 S im p le FE 4 50 ,8 79

N
o

rm
al

iz
ed

 E
ve

n
ts

S p il l E ve n ts

F i l l E ve n ts

P arse r : T o tal S p ills N ormaliz e d by B ase line

0 .0 0

0 .2 0

0 .4 0

0 .6 0

0 .8 0

1 .0 0

1 .2 0

1 .4 0

1 .6 0

S im p le Ma x
U s e

MF U B e s t Fi t S im p le
D VI

Ma x
U s e
D VI

MFU
D VI

B e s t Fi t
D VI

Id e a l
D VI

RS E M o de l: 0 - 2 B In s tr . S im ple s pills = 2 3 ,0 3 2 ,3 0 1

N
o

rm
al

iz
ed

 S
p

ill
s

P arse r : T o tal F ill and S p ill E v e nts N ormaliz e d by
B ase line S pill Ev e nts

0 .00

0 .20

0 .40

0 .60

0 .80

1 .00

1 .20

S imple Ma x
Use

MFU Be s t
Fit

Simp le
DV I

Ma x
Us e
DV I

MFU
DV I

Be s t
Fit DV I

Id e al
DV I

RS E M o d e l: 0 - 2B In s tr . Sim p le S E = 2,3 4 4,65 0
 S im p le FE = 1 ,9 93 ,9 78

N
or

m
al

iz
ed

 E
ve

nt
s

S p ill E ve n ts

F ill E ve n ts

Gzip: T otal Spills Normalized by Base line

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Sim p le Max
U s e

MFU Be s t Fit Sim ple
D VI

Max
U s e
D VI

MFU
D VI

B es t Fit
D VI

Ide al
D VI

RSE Mode l: 0 - 2 B Instr. Sim ple spills = 169 43

N
or

m
al

iz
ed

 S
pi

lls

Gzip: T otal Fill and Spill Events Normalized by B ase line
Spill Events

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Simple Max
Us e

MFU Bes t
Fit

Simple
DV I

Max
Us e
DV I

MFU
DV I

Bes t
Fit DV I

Ideal
DV I

RSE Mode l: 0 - 2B Instr. S im ple SE = 2,497
 S im p le FE = 630

N
o

rm
al

iz
ed

 E
ve

n
ts

Spil l Even ts

Fil l Even ts

Crafty: T otal Spills Normalized by Base line

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Simple Max Us e MFU Bes t Fit Simple
DV I

Max Use
DV I

MFU DV I Bes t Fit
DV I

Ideal DV I

RSE M ode l: 0 - 2B Ins tr. S im p le s pills = 110,630,609

N
o

rm
al

iz
ed

 S
p

il
ls

C rafty: T otal Fill and Spill Ev e nts N ormalize d by
Base line Spill Ev e nts

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Simple Max
Us e

MFU Best
Fit

Simple
DV I

Max
Use
DV I

MFU
DV I

Best
Fit DV I

Ideal
DV I

RSE M ode l: 0 - 2B In s tr . Sim p le SE = 3,567,618
 Sim ple FE = 3,215,195

N
o

rm
al

iz
ed

 E
ve

n
ts

Spi ll Eve nts

Fi ll E ve nts

Figure 2: For each of 8 benchmarks, the left chart shows the normalized spills (in terms of register
count); the right chart shows the spill/fill events (in terms of occurrence) for all RSE models.

clearly equal or outperform Simple DVI. Max Use DVI
does outperform Simple DVI for all the benchmarks by an
average of 20%.

 5.2.6 Most-frequent-fit Use DVI.

 Most-frequent-fit Use (MFU) is also guaranteed to
allocate frames of size less than or equal to the Simple
model and Max Use model. MFU DVI should be equal to
or outperform Simple DVI and Max Use DVI. DVI model
shows an average of 55% improvement over Simple DVI
and a 46% improvement over Max Use DVI. For gap and
health, the number of fills and spills in MFU DVI was an
order of magnitude smaller than the Simple DVI and Max
Use DVI models. With the exception of mcf and parser,
MFU DVI also had fewer fills and spills than Best Fit
DVI.

5.2.7 Best Fit DVI.
 Similar to all the non-DVI models, we expect the Best
Fit DVI model to produce fewer spills than Simple DVI
and Max Use DVI. The average decrease in total spills
from Simple DVI and Max Use to Best Fit DVI is 48%
and 36% respectively. The comparison of MFU versus
Best Fit is also the same for both non-DVI and DVI
models. The MFU DVI model had fewer spills than the
Best Fit DVI models for all benchmarks except mcf and
parser.

5.2.8. Ideal DVI.
 Ideal DVI defines the upper bound on optimal RSE
performance. This allocation scheme uses oracle
knowledge about the exact lifetime of every register, and
it allocates and deallocates as necessary on a per-register
basis. Therefore, at any point during the execution of a
program, every frame is sized to exactly the number of
registers in use. Not surprisingly, the data in Figure 2

G cc: T o tal S p ills N ormaliz e d by B ase line

0 .0 0

0 .2 0

0 .4 0

0 .6 0

0 .8 0

1 .0 0

1 .2 0

S im p le Ma x
U s e

MF U B e s t F it S im p le
D VI

Ma x
U s e
D VI

MF U
D VI

B e s t Fi t
D VI

Id e a l
D VI

RS E M ode l: 0 - 2 B Ins tr . S im p le s p ills = 7 3 ,8 3 3 ,0 1 3

N
o

rm
al

iz
ed

 S
p

ill
s

G cc: T o ta l F ill and S p ill E v e nts N ormaliz e d by B ase line
S p ill E v e nts

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

S imp le Max
Us e

MFU B es t
Fit

Simple
DV I

Max
Use
DV I

MFU
DV I

B es t
Fit DV I

Id ea l
DV I

RSE M o d e l: 0 - 2 B In s t r . S im p le SE = 4 ,4 07 ,0 64
 S im p le FE = 2 ,8 22 ,8 0 5

N
or

m
al

iz
ed

 E
ve

nt
s

S p il l E ve n ts

Fil l E ve n ts

M st: T otal Sp ills N ormaliz ed by B ase line

0 .00

0 .20

0 .40

0 .60

0 .80

1 .00

1 .20

1 .40

1 .60

1 .80

S im p le Max
U s e

MFU B es t F it S im p le
D VI

Max
U s e
D VI

MFU
D VI

B es t F it
D VI

Idea l
D VI

RS E M ode l. S im ple s pills = 1 01

N
o

rm
al

iz
ed

 S
p

ill
s

M st: T otal F ill and S pill E v e nts N ormaliz e d by B ase line
Spill Ev e nts

0 .00

0 .50

1 .00

1 .50

2 .00

2 .50

Simple Max
Us e

MFU Bes t
Fit

Simp le
DV I

Max
Use
DV I

MFU
DV I

Bes t
Fit DV I

Ideal
DV I

RSE M o d e l. Sim p le SE = 14
 S im p le FE = 7

N
o

rm
al

iz
ed

 E
ve

n
ts

S p ill E ven ts

F ill E ven ts

Health: T otal Spills Normalized by Base line

0.00

0.50

1.00

1.50

2.00

2.50

Sim ple Max
Us e

MFU Bes t Fit Sim ple
DVI

Max
Us e
DVI

MFU
DVI

Bes t Fi t
DVI

Id eal
DVI

RSE Mode l. Simple spills = 3 05,4 09

N
or

m
al

iz
ed

 S
pi

lls

Health: T otal Fill and Spill Events Normalized by
Base line Spill Events

0.00

0.50

1.00

1.50

2.00

2.50

Simple Max
Use

MFU Bes t
Fit

Simple
DV I

Max
Use
DV I

MFU
DV I

Bes t
Fit DV I

Ideal
DV I

RSE M o de l. Sim ple SE = 40,718
 Sim p le FE = 19,758

N
o

rm
al

iz
ed

 E
ve

n
ts

Spi ll Eve nts

Fil l Even ts

supports the claim that Ideal DVI indeed outperforms all
other proposed allocation schemes. crafty, gap, gcc, mcf,
and parser all enjoy an order of magnitude reduction in
the total number of spills when compared with the Simple
DVI model. health has two orders of magnitude reduction
in the number of spills compared to Simple DVI model.
gzip and mst fit entirely in the register stack, and cause no
spills using Ideal DVI.

5.3 In-depth Analysis of MFU

 It seems counter intuitive that MFU can have fewer
spills than BestFit for both the non-DVI and DVI models,
since a BestFit policy assumes perfect knowledge on the
exact frame size per every dynamic function instance. If
the number of registers allocated by MFU is initially
greater than the number of registers allocated by BestFit,
then BestFit must perform as well as or better than MFU,
depending upon whether DVI policy is used. Otherwise, it
is possible for MFU to outperform BestFit. Figure 3
illustrates one such scenario where the number of registers
initially allocated by MFU is fewer than that of BestFit.

 In the call graph in Figure 3, we see that the most
frequently used frame size for A is 6, the oracle knowledge
in the BestFit model recognizes that the exact usage for
the three instances of A are 12, 6 and 16 respectively.
Consider allocation for function instance i in Figure 3
with MFU and with Best Fit in two scenarios: 1) MFU
sees an under-allocation before the call to B, 2) MFU sees
an under-allocation after the call to B. These are shown in
Figure 4.

Figure 3. Best-Fit model allocates exact number of
registers used for a given dynamic instances of function
A. The MFU allocates the most frequent size for ALL

dynamic instances of A.

 In the first scenario, MFU allocates 6 registers upon
entering A. Before the call to B, MFU detects under-
allocation, and allocates 6 additional registers for A.
This deferred allocation is no better than the BestFit
case, which would allocate 12 registers upon entering A.
Thus, MFU in this case does not outperform BestFit.

 In the second scenario, MFU again allocates 6 registers
upon entering A. A won’t encounter the need for any
additional registers until after B has been called and has
returned. B now has the use of 6 additional registers.
Based on our previous assertion that minimizing a given
frame’s size, minimizes future RSE traffic, it is clear that
in this case MFU will outperform Best fit. This scenerio
of under-allocation explains said performance in Fugure
2. This differred allocation is, in a sense, an
approximation of IdealDVI, wich always minimizes the
size of every frame on the stack.

Figure 4. (1) MFU performance is equal to BestFit, (2)
MFU outperforms BestFit

5.4 Performance of RSE Optimizations for Code
with Differing Compiler Optimizations

 The performance of the Simple policy is directly
affected by the compiler which encodes the frame size in
the alloc instruction. The results shown so far have been
collected using the peak build binary and are used to
primarily compare different microarchitecture specific
RSE optimizations. It is interesting to gauge the
effectiveness of these RSE optimization schemes in
context of different compiler optimizations. In particular,
we would like to find out whether the same relative
merits between different RSE schemes manifest for base
build binaries as well. Additionally, in order to measure
the impact of code with lessened register pressure, we
also disable the loop unrolling optimization in the peak
build environment and use the resulting binaries, denoted
as peak_no_lur to evaluate RSE schemes.

Example call graph

… A
�

 B
�

 C
�

 A
�

 C
�

 D
�

 A ….
BestFit : 12 6 16

Regs Alloc i i+1 i+2

Instance #
… A

�
 B

�
 C

�
 A

�
 C

�
 D

�
 A ….

MFU Model:
Regs Alloc 6 6 6

Assume that 6 is the most frequent number of registers allocated for
function A.

B
Alloc 6 regs

Alloc 6 regs

Return

Call B

A

Scenario 2

Alloc 12 regs

Return

Call B

A

Scenario 1

B

5.4.1 Peak Binaries vs. Base Binaries
 In comparison between peak and base binaries, the peak
binaries often have fewer spills than the corresponding
base binary. In the case of mcf, there is an improvement
greater than 250% in the reduction of spills for Max Use
DVI and MFU DVI. crafty, gcc, and parser also incur
fewer spills. However for gap and gzip, the peak
benchmarks incur more spills than base binaries. gap’s
peak results are slightly worse than the base binary.
However, the peak for gzip is dramatically worse than its
base. With the exception of the Simple model (which has
overlapping frames), for gzip, all other RSE models using
the peak binaries incur two orders of magnitude more
spills than the base binaries. One likely reason could be
that the loop un-rolling optimization enabled by default
for the peak binaries greatly increases the register usage
and lifetime of registers of interest. For a heap based
allocation scheme, this would greatly exacerbate the
impact of redundancy of input and output registers in the
related frames. Consequently, the peak binaries would
result in excessive spills.

5.4.2 Peak Binaries vs. Peak_no_lur Binaries
 Even though the peak binaries do not demonstrate cross-
board performance improvement in RSE schemes for all
the benchmarks, the data does firmly indicate that
differing compiler optimizations could have significant
role in enhancing performance for the RSE optimizations.

 The data indicates peak_no_lur binaries have fewer
spills than the base binaries for all the benchmarks. By
turning off the loop un-rolling feature, the compiler uses
fewer registers for loops in peak_no_lur binaries than in
peak binaries. The reduction in register usage directly
translates to reduction in the total number of spills. In
general, differing RSE schemes across the board, the
relative performance of peak_no_lur binaries follow
similar trends as that for the peak binaries. For both gap
and gzip, the peak_no_lur binaries outperform both the
base and peak binaries. In gzip, the peak_no_lur binary
no longer incurs the excessive spills in its peak binary.
Turning off the loop un-rolling feature significantly
improved the RSE performance of gzip, across the
spectrum of RSE designs.

5.5 Performance of RSE Optimizations For Varied
Register Stack Sizes

 As microprocessors approach higher clock frequencies,
the ability to access the register file in one clock cycle

becomes much more difficult, especially with the large
register file sizes on the current Itanium processor
families. It is of great interest to examine if the RSE
optimization with DRU and DVI may allow us to get the
same performance with a smaller register file. The same
RSE simulation and analysis is performed using one
CPU2000 base binary (mcf) and one Olden binary
(health), with register stack sizes ranging from 64 to 128.
The maximal dynamic frame sizes among all functions
for both benchmarks are below 64, thus suitable for our
analysis. The results are shown in Figure 5. All data are
normalized to that for stack size of 96, the baseline RSE
stacked register size.

 For both benchmarks, the total number of spills
increases as the register stack size decreases from 128
registers to 64 registers, which is expected. For mcf, the
average increase in total spills is 40% when the stack size
decreases from 96 to 80 registers. The average increase
in total spills is 105% when the register stack size
shrinks from 96 to 64. For health, the average increase
in total spills when the register stack decreases from 96
to 80 registers and 96 to 64 registers are even worse, at
125% and 537% respectively.

 Notice, however, that the difference in spills between
the non-DVI models and its respective DVI models
increases as the size of the register stack decreases. The
DVI models do spill more with smaller register stack
sizes but not as much as the non-DVI models. This
highlights the relatively more significant role that DVI
can play as register file sizes shrink: DVI clearly helps
ensure the scalability of a RSE. In the case of mcf, all
DVI-models outperform their non-DVI counterparts by
having approximately 50% fewer spills. With the
exception of the Simple model in health, all of health’s
DVI models outperform their non-DVI counterparts.
For health, the reason that Simple outperforms
Simple_DVI is due to the redundancy existent in the
non-overlapping frames in the DVI models. It is worth
noting that for health, both MFU and MFU DVI have
an order of magnitude fewer spills than the other
models (with the exception of Ideal_DVI) for all register
stack sizes. This echoes the previous observation that
the MFU DRU policy can be a very effective allocation
policy.

 The combined use of DRU and DVI as shown in the
MFU DVI model will enhance the RSE’s performance
significantly. For mcf, the MFU DVI model with 64
registers is equivalent to the Simple model at 96 registers.
For health, the MFU DVI model at 64 registers
outperforms the Simple model at 112 registers.

H ealth : T o ta l S p ills N o rm a liz ed b y B ase lin e v s . # o f R e g is ters

0

2

4

6

8

10

12

14

64 80 9 6 112 128

Re g i ste rs

N
o

rm
al

iz
ed

 S
p

ill
s

S im ple

M ax Us e

M FU

B es t F it

S im ple D V I

M ax Us e DV I

M FU DV I

B es t F it D V I

Ideal DV I

avg

Mcf: Total Spills Normalized by Baseline vs. # of Registers

0

0.5

1

1.5

2

2.5

3

64 80 96 112 128

Registers

N
o

rm
al

iz
ed

 S
p

ill
s

Simple

Max Use

MFU

Best Fit

Simple DVI

Max Use DVI

MFU DVI

Best Fit DV I

Ideal DVI

avg

Figure 5: The total number of spills made by the RSE models with various register stack sizes: (a) Mcf, (b)
Health.

5.6 RSE Performance with Varied Register Stack
Sizes and Compiler Optimizations

In this section, we further investigate impact of varied
register stack sizes to binaries built with different compiler
optimizations across all RSE optimizations. To this end,
we choose mcf. Its peak, and peak_no_lur binaries are
evaluated and compared for all RSE models with varied
register file sizes.
 The peak and peak_no_lur binaries for mcf behave
rather similarly. As stated earlier, both peak and
peak_no_lur had significantly fewer spills than the base
binary. This continues to be the case for all the register
stack sizes. With a stack size of 64 registers, MFU DVI of
peak and peak_no_lur have about 45% fewer spills than
the baseline binary.

6. Conclusion

 The common goal of the set of RSE optimizations in this
paper is to minimize potential inefficiency of register file

utilization for the stacked registers. To achieve this goal,
the key learning from this research can be summarized
into three axioms which can help guide optimal RSE
implementations in future Itanium processors.

 1. Trim internal fragmentation . Since compiler-
determined static frame size tends to represent the worst-
case register usage scenario that rarely occurs, it is
essential to use dynamic usage information to allocate
frame sizes close to the number of registers that will
actually be used. This can lead to a drastic reduction of
the internal fragmentation problem. The benefits are
clearly demonstrated by RSE organizations using DRU
based allocation policies.

 2. Timely (or sometimes lazy) allocation of what’s
needed. For registers within a given allocated frame, the
life times for individual registers are NOT necessarily
persistent across the entire lifetime of the corresponding
function, so it is beneficial to do partial allocation in a
lazy fashion. The performance advantage of a MFU
policy over a Best Fit policy, albeit counter-intuitive upon
first sight, highlights the advantage of deferred partial
allocation.

 3. Timely deallocation of what’s no longer needed.
The performance advantage of RSE schemes that use DVI
based deallocation policies is pronounced. Overall, the
combination of an allocation policy using most frequent
frame size and deallocation policy using dead register
information proves to be highly effective and can achieve
on average 71% improvement in reducing aggregate spills
and fills over the canonical RSE.

References

[1] R. Ghiya, D. Lavery, and D. Sehr. On the importance of
points-to analysis and other memory disambiguation
methods for c programs. In SIGPLAN Conference on
PLDI, pp. 47-58, June 2001

[2] Robert P. Wilson and Monica S. Lam. Efficient
Context-sensitive pointer analysis for C programs. In
SIGPLAN Conference on PLDI’95.

[3] C.J. Chaitin et al. Register allocation via coloring.
Computer Languages, vol 6. no. 1, pp 47-57. 1981

[4] F. C. Chow and J. L. Hennessy. The priority-based
coloring approaches to register allocation. ACM Trans.
Programming Languages and Systems. Vol 12. No. 4.
pp. 501-536. 1990.

[5] Intel Corp. Intel IA-64 Architecture Software
Developer’s Manual.

[6] Matthew Postiff. Compiler and Microarchitecture
Mechanisnms for Exploiting Registers to Improve
Memory Performance. Ph.D. Thesis. University of
Michigan, March 2001.

[7] Matthew Postiff, David Greene, Steve Raasch, and
Trevor Mudge. Integrating Superscalar Processor
Components to Implement Register Caching.
Proc. 15th Intl. Conf. on Supercomputing, June
18-21, 2001. Sorrento Italy.

[8] Jose-Lorenzo Cruz, A. Gonzalez, M. Valero and
N. P. Topham. Multiple-banked Register File
Architectures. Proc. 27th ISCA, pp 316-325, June
2000

[9] Robert Yung and N. Wilhelm. Caching Processor
General Registers. ICCD’95. pp. 307-312. Oct.
1995

[10] Richard Jones. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management.
John Wiley & Sons, Ltd, ISBN 0-471-94148-4,
1999.

[11] Dirk Grunwald and Benjamin Zorn Evaluating
Models of Memory Allocation, ACM Transactions
on Modelling of Computer Systems, Jan. 1994.

[12] J. Bharadwaj et al., The Intel IA-64 Compiler
Code Generator, IEEE Micro, Sept.-Oct. 2000, pp.
44-53.

[13] R. Krishnaiyer et al., An Advanced Optimizer for
the IA-64 Architecture, IEEE Micro, Nov.-Dec.
2000.

[14] SPEC. SPEC CPU2000 Documentation
(www.spec.org/osg/cpu2000/docs/)

[15] Itanium ™ Processor Benchmarks.
http://www.intel.com/eBusiness/products/itanium/
overview/bm012101.htm

[16] Dezso Sima. The Design Space of Register
Renaming Techniques. IEEE Micro. Vol. 20 No.
5. pp. 70-83. Sep/Oct 2000

[17] T. Monreal, A. Gonzalez, M. Valero, J. Gonzalez
and V. Vinals. Delaying Physical Register
Allocation through Virtual-Physical Registers.
Proc. 32nd Intl. Symp. Microarchitecture, pp. 186-
192, Nov. 1999

[18] A. Gonzalez, M. Valero, J. Gonzalez and T.
Monreal. Virtual Registers. Proc. Intl. Conf. High-
Performance Computing, pp 364-369, 1997

[19] A. Gonzalez, J. Gonzalez and M. Valero. Virtual-
Physical Registers. Proc. 4th Intl. Symp. HPCA-4,
pp 175-184, Feb 1998

[20] J. Lo, S. S. Parekh, S. J. Eggers, H. M. Levy and D.
M. Tullsen. Software-directed Register
Deallocation for Simultaneous Multithreaded
Processors. IEEE Trans. Parallel and Dist.
Systems. Vol. 10, No. 9, Sept 1999, pp 922-933.

[21] M. M. Martin, A. Roth, and C. N. Fischer.
Exploiting Dead Value Information. Proc. 30th
Intl. Symp. Microarchitecture (Micro’97), Dec.
1997.

[22] D. M. Tullsen. Simulation and Modeling of a
simultaneous multithreaded processor. In 22nd
Annual Computer Measurement Group
Conference, December 1996

[23] R. Uhlig, R. Fishtein, O. Gershon, I. Hirsh, H.
Wang. SoftSDV: A presilicon software
development environment for the IA-64
architecture. Intel Technology Journal, 4th
quarter, 1999.

[24] Martin C. Carlisle. Olden: Parallelizing Programs
with Dynamic Data Structures on Distributed
Memory Machines. PhD Thesis, Princeton
University Department of Computer Science, June
1996.

Efficient and Fast Data Allocation of On-chip Dual Memory Banks

Jeonghun Cho Jinhwan Kim Yunheung Paek

Department of Electrical Engineering and Computer Science

Korea Advanced Institute of Science & Technology

�jhcho,jhkim,ypaek�@soar.kaist.ac.kr

Abstract

Efficient utilization of memory space is extremely im-
portant in embedded applications. Many DSP ven-
dors provide a dual memory bank system that allows
the applications to access two memory banks simul-
taneously. Unfortunately, we have found that existing
vendor-provided compilers cannot generate highly effi-
cient code for dual memory space because current com-
piler technology is unable to fully exploit this DSP hard-
ware feature. Thus, software developers for an embed-
ded processor have hard time developing software by
hand in assembly to exploit the hardware feature effi-
ciently. In this paper, we present a preliminary study of
a memory allocation technique for dual memory space.
Through there has been some work done for dual mem-
ory banks, efficient code was generated but it required so
long compilation time. Although the compilation speed
is relatively of less importance for embedded processors,
it still should have a reasonable upper bound particu-
larly for industy compilers due to ever increasing de-
mands on faster time-to-market embedded software de-
sign and implementation. To achieve such reasonable
compilation speed, we simplified the dual memory bank
allocation problem by decoupling our code generation
into five phases: register class allocation, code com-
paction, memory bank assignment, register assignment
and memory offset assignment. The experimental results
show that our generated codes perform as good as pre-
vious work, yet reducing the compilation time dramati-
cally.

1 Introduction

Recently, system-on-chip DSP architecture supports
both on-chip and off-chip memory; the former is internal
to the processor for rapid data access but its size is lim-
ited, and the latter is external to the processor for larger
sized data but its speed is much slower. Since access-

ing the off-chip memory causes performance overhead
in terms of time and energy, the code embedded in the
system is generally designed hard to be fit into the on-
chip memory. In our work, we focus on utilizing the
on-chip memory architecture.

Memory

ALU

address bus

data bus

(a) Von Neumann Memory Architecture

Processor

Program
Memory

Data
Memory

ALU

Program memory address bus
Program memory data bus
Data memory address bus

Data memory data bus

(b) Harvard Memory Architecture

Processor

Figure 1. The Memory Architecture

Internal memory of the DSP has Harvard memory ar-
chitecture which is composed of program and data mem-
ory modules shown in Figure 1 (b). In this architec-
ture, two memory banks are connected through two in-
dependent address and data buses. In a different way,
Von Neumann memory architecture has a single mem-
ory bank with shared data and address bus shown in Fig-
ure 1 (a). One of the advantages of Harvard architecture
is that it can access two memory in one instruction cycle
simultaneously.

To maximize the speed of data memory access, the
original design of Harvard architecture has been en-
hanced by many vendors of the fixed-point DSPs. In
one popular design supported by Motorola DSP56000,
NEC uPD77016, Analog Device ADSP2100 and DSP
Group PineDSPCore, three memory banks are provided:
a program memory bank plus two data memory banks
each with independent address space. These three mem-
ory banks increase the memory bandwidth by allowing
to access a program and two data memories in parallel.
This feature of memory architecture can be shown to be
very effective to many DSP algorithms such as the FIR
filter algorithm (���� �

����

��� �������������). In fact,
a C implementation of the FIR filter can be executed at

an ideal rate of one tap per instruction cycle on a DSP
with the three memory banks. However, this ideal speed
of execution is only possible with one condition: the two
variables (a(i) and b(n-1)) should be assigned to dif-
ferent data memory banks.

Several existing compilers that we examined were not
able to fully exploit this dual memory feature, and con-
sequently failed to generate highly optimized code for
their target DSPs. This is mainly because, until recently,
little work has been done by compiler researchers on
data allocation techniques that efficiently utilize the dual
memory architecture. This inevitably implies that the
programmers should develop their applications by hand
in assembly to exploit the hardware feature efficiently,
which makes programming embedded DSPs quite com-
plex and time consuming.

Probably the most recent work on this issue is done
by Sudarsasnam, et al. [9]. In their work, they presented
their experimental results showing that their compiler
generated highly optimized code for a commercial DSP
in most cases. However, the results also showed an ev-
idence that the compilation time may increase substan-
tially for large code or may not produce efficient code
even after long exhaustive search for the optimal solu-
tion.

In this paper, we present a code generation algorithm
that attempts to exploit this architectural feature more
efficiently. Our algorithm is fast in that it has polynomial
time complexity, and yet, as will be shown in this paper,
it generates target code of as high quality as the code
generated by previous work almost in all cases.

This paper is organized as follows. Section 2 de-
scribes our workbench, Motorola DSP56000 architec-
ture. Section 3 shows our approach to support the
dual memory banks. Section 4 presents our experimen-
tal results with a set of DSP benchmarks on Motorola
DSP56000, and compares the performance of our com-
piler with Sudarsanam’s, and conclusions are given in
Section 5.

2 The Dual-Memory Architecture

Some existing fixed-point DSPs perform move opera-
tions in parallel for speed up operations. In this paper, as
an example, we describe the Motorola DSP56000 which
is one of these DSPs. The DSP56000 architectural units
related to parallel move are the data ALU, the AGU, and
the X/Y data memory banks.

The data ALU, shown in Figure 2, consists of four
24-bit input registers called X0, X1, Y0, and Y1, and
two 56-bit accumulators called A, and B. Data transfers
between the data ALU registers and the X data memory
or Y data memory occur over XDB, YDB. The AGU

X0 (24)

X1 (24)

Y0 (24)

Y1 (24)

Multiplier

ALU

A (56)

B (56)

Shifter/Limiter

Shifter

YDB

XDB

Figure 2. Data ALU of Motorola DSP56000

performs address calculations necessary to indirectly ad-
dress data operands in memory. It operates simultane-
ously with other components to perform address calcu-
lations in parallel with the ALU operation. The AGU,
shown in Figure 3, is divided into two identical halves,
each of which has an address ALU and two sets of 16-
bit register files. One set consists of four address regis-
ters R0 through R3 and four offset registers N0 through
N3, and the other consists of four address registers R4
through R7 and four offset register N4 through N7. The
two address ALUs are identical in that each contains a
16-bit full adder called an offset adder, which associ-
ated with each set can add 1) plus one, 2) minus one, 3)
the contents of the respective offset register Ni, or 4) the
two’s complement of Ni to the contents of the selected
address register Ri. The address output multiplexers se-
lect the source for the XAB, YAB. The source of each
effective address may be the output of the address ALU
for indexed addressing or an address register for register-
indirect addressing. The X/Y data memory banks con-
sist of two 512-word * 24-bit data memory banks, which
allow at most two data memory access to occur in paral-
lel.

Possible memory references of DSP56000 are X, Y,
L, and XY. The X (Y) memory reference is that the
operand, a word reference, is in X (Y) memory space.
Data can be transferred from X (Y) memory to register
or from a register to X (Y) memory, Long (L) mem-
ory space references both X and Y memory spaces with
one operand address. XY memory space references both
X and Y memory spaces with two operand addresses.
Two independent addresses are used to access two word
operands - one word operand is in X memory space, and
one word operand is in Y memory space.

Due to the feature of the DSP56000 architecture,
as mentioned above, one data ALU operation and two

N0

N1

N2

N3

MUX

Address ALU

XDB

R0

R1

R2

R3

R4

R5

R6

R7

N4

N5

N6

N7

Address ALU

MUX

X Memory X Memory

Global Data Bus

XAB YAB

YDB

Figure 3. Address Generation Unit and X/Y
Data Memory Bank

move operations may be performed in parallel during
one instruction cycle. However, due to the DSP56000
microarchitecture, only the case that satisfy the follow-
ing constraints can be performed: two memory access or
a pair of one memory access and one register transfer are
performed in parallel, destination registers are different,
the X data memory access is performed with X0, X1, A,
or B, and the Y data memory access is performed with
Y0, Y1, A, or B.

3 Code Generation for Dual Memory Ar-
chitecture

Figure 4 shows the overall structure of our compiler.
VPO is the code generator of the Zephyr compiler [1],
which was originally developed at the University of Vir-
ginia as a part of the National Compiler Infrastructure.
In this work, we have extended VPO to handle DSPs
with dual memory space. In our new code generation
process is divided into five phases: register class alloca-
tion, code compaction, memory bank assignment, regis-
ter assignment, and memory offset assignment. As we
demonstrate later, this decoupled structure of code gen-
eration phases has led us to simplify our data allocation
algorithm for dual memory banks and to run the algo-
rithm substantially faster than other previous work [9]
where all these phases are coupled to handle these is-
sues simultaneously in one phase.

Figure 5 displays an example, which will serve to il-
lustrate the various features of the new approach in this
paper. Each phase is explained in detail using this exam-
ple.

3.1 Register Class Allocation

Most existing fixed-point DSPs are known to have
irregular structure with heterogeneous register architec-
tures. These architectures contain multiple register files

Front-end Code Expander VPO

Instruction Selection
&

Optimization

Code Compaction

Memory Bank Assignment

Register Assignment

Assembly Codes

C Codes

Memory Offset Assignment

Register Class Allocation

Figure 4. Overall Structure of Our Compiler

int a, b, c, d, e, f;
long v, w;

v = a * b + c;
w = d * e + f;

Figure 5. Example C Code for Describing
Our Algorithm

where different files are usually distributed and dedi-
cated to different sets of instructions. In our recent
study [4], we showed that the graph-coloring register
allocation algorithm originally implemented in Zephyr,
like most existing compilers, was effective only for pro-
cessors with homogeneous centeralized registers. In our
work, we handle heterogenous registers by performing
register allocation in two separate phases, register class
allocation and register assignment (see Figure 4). In the
same study, we also showed that separation of register
allocation simplified our code geneartion algorithm, yet
allowing us to achieving relatively good performance.

To more formally describe our register class alloca-
tion, we start this section by first presenting a few defi-
nitions.

Definition 1 Given a target machine � , let � =
���� ���...� ��� be a set of all the instructions defined on
� , and � = �	�� 	��

� 	�� be a set of all its regis-
ters. For instruction �� � � , we define a set of all its
operands, ������ � ����� ����

� ����. Assume ��

is a set of all the registers that can appear at the posi-
tion of some operand ���� � � � � �. Then we say here
that �� forms a register class for instruction �� .

For instance, SPARC has an instruction with three
operands

ADD 	���� 	��� � 	���,
where all the 32 registers(r0,r1,

,r31) in the register

file can appear as the first operand 	���. In this case,
the set of all these registers forms a single register class
for ADD. Since at the other operands 	��� and 	���, the
same 32 registers can appear, they again form the same
class for the instruction. Therefore, we have only one
register class defined for instruction ADD.

As another example, consider the instruction
MPY 	���� 	��� � 	���

of Motorola DSP56000, which multiplies the first two
operands and places the product in the third operand.
The DSP56000 restricts 	��� and 	��� to be input regis-
ters X0, X1, Y0, Y1, and 	��� to be accumulator A or
B. In this case, we have two register classes defined for
MPYA: �X0, X1, Y0, Y1� at 	��� and 	��� and �A,B�
at 	���.

Definition 2 From Definition 1, we define �� , a collec-
tion of distinct register classes for instruction �� , as fol-
lows:

�� �

��

���

����
 (1)

From this, we in turn define � as follows:

� �

��

���

��
 (2)

We say that � is the whole collection of register classes
for machine � .

In the above examples, �� for ADD and MPY
are, respectively, ��r0,

,r31�� and ��X0, X1, Y0,
Y1�,�A,B��. Notice that a typical processor with � gen-
eral purpose registers like SPARC or PowerPC is often
said to be homogeneous mainly because � is usually a
set of a single element consisting of the � registers for
the processor, which, by Definitions 1 and 2, equiva-
lently means that the same � registers are homogeneous
in all the machine instructions. In case of DSPs, how-
ever, its registers are usually dedicated differently to the
machine instructions, which make them partially homo-
geneous only in the subsets of machine instructions. For
example, notice that even one instruction like MPY of
DSP56000 has two different sets of homogenous regis-
ters: XYN and AB. Table 1 shows the whole collection
of register classes defined for DSP56000. In general, we
say that a machine with such complex register classes
has heterogeneous architecture.

The register class allocation is not to allocate real reg-
isters but to allocate a set of possible registers (that is, a
register class) which can be placed as operands of an in-
struction. Real registers are selected among the register
class for each instruction later in the register assignment
phase. Since the focus of this paper is not on the register

ID Register Class Indicated Registers

2 XYN X0, X1, Y0, Y1
4 XY X, Y (long word)
5 YR R4 � R7
6 AB Accumulator A, B
7 YN N4 � N7
8 XR R0 � R3
9 XN N0 � N3

10 X X0, X1
11 Y Y0, Y1

Table 1. The Register Class for Motorola
DSP56000

class allocation, we cannot discuss the whole algorithm
here. Refer to [4] for more details.

Figure 6 shows the target code for DSP56000 trans-
lated from the code in Figure 5 after register classes are
allocated. In the example, we can see the register classes
associated to each register used in the code.

1 MOVE a, r0
2 MOVE b, r1
3 MOVE c, r2
4 MAC r0, r1, r2
5 MOVE low(r2), low(v)
6 MOVE high(r2), high(v)
7 MOVE d, r3
8 MOVE e, r4
9 MOVE f, r5
10 MAC r3, r4, r5
11 MOVE low(r5), low(w)
12 MOVE high(r5), high(w)

r0 : XYN
r1 : XYN
r2 : AB
r3 : XYN
r4 : XYN
r5 : AB

Register Class

Figure 6. Uncompacted Code

3.2 Code Compaction

Not only to reduce code size, but also to exploit par-
allel operations provided by the hardware, code com-
paction is performed between register class allocation
and register assignment. Figure 7 shows the resulting
code after code compaction is applied to the example in
Figure 6.

MOVE a,r0 b,r1
MOVE c,r2 d,r3
MAC r0, r1, r2 e,r4 f,r5
MAC r3, r4, r5 low(r2),low(v)
MOVE high(r2),high(v) low(r5),low(w)
MOVE high(r5),high(w)

Figure 7. Compacted Code

The compaction algorithm is based on the conven-
tional list scheduling algorithm. The first step of the al-
gorithm is to construct a conventional data dependence
graph (DDG) for the current basic block. Each node
of this directed graph corresponds to an instruction of
uncompacted original code, and each edge represents
dependence between instructions; that is, an edge � =
(��,��) means that �� must be scheduled before �� in
final compacted code.

Figure 8 shows the DDG for the original code se-
quence in Figure 6. The number to the left of each node
represents the priority of the node that is required for
scheduling sequence. The bottom node has a priority of
zero, which implies that it will be scheduled last.

1 2 3

4

51

2

3 3 3
7 8 9

10

111

2

3 3 3

60 120

Figure 8. Data Dependence Graph for Code
In Figure 6

After the DDG has been constructed, the following
sequence of steps are repeatedly iterated until all DDG
nodes have been scheduled:

1. Find all unscheduled DDG nodes whose parents
have already been scheduled, and store them in the
ready set �.

2. Sort the nodes in � in the priority order.

3. In the sorted order, fill nodes to the instruction in
the compacted code until the instruction word is
full1.

4. Remove the scheduled nodes from R.

3.3 Memory Bank Assignment

After code compaction, each variable in the result-
ing code is assigned into dual memory banks (that is,

1An instruction word in DS56000 consists of one ALU operation
slot and two parallel move slots. Therefore, a word can be filled with
two parallel moves and one ALU operation.

X or Y in DSP56000). The first step for this, we con-
struct a weighted undirected graph, called the access
graph (AG). In the AG, each node corresponds to a pro-
gram variable, and a pair of two nodes is connected via
an edge if the corresponding two variables are scheduled
into the same instruction word in the code after code
compaction. Figure 9 (a) shows the AG for the code
from Figure 7. The weight on an edge represents the
number of a pair of the variables scheduled in a word.

a
b

c

d
e

f

v

w X Y

a
c
e
v

b
d
f
w

(a) Access Graph

MOVE X:a,r0 Y:b,r1
MOVE X:c,r2 Y:d,r3
MAC r0, r1, r2 X:e,r4 Y:f,r5
MAC r3, r4, r5 low(r2),X:low(v)
MOVE high(r2),X:high(v) low(r5),Y:low(w)
MOVE high(r5),Y:high(w)

(c) Memory Bank Assignment

(b) Assigned Memory Bank

1

1

1

1

Figure 9. Result After Memory Bank As-
signment

As mentioned in Section 2, if two variables refer-
enced in an instruction word are assigned to different
memories on a dual memory architecture, they can be
fetched in a single instruction cycle. Otherwise, an ex-
tra cycle would be needed to fetch them in two cycles.
The strategy we should take to maximize the memory
throughput when we assign memory banks is, therefore,
that as many as possible variables connected by an edge
should be scheduled to the same instruction. Figure 9 (b)
shows that the variables a, c, e, and v are assigned in X
memory and the renaming ones b, d, f, and w are as-
signed in Y memory. This is optimal because all pairs of
variables connected via edges are assigned to different
memories X and Y, thus avoiding extra cycles to fetch
variables, as can be seen from the code in Figure 9 (c),
which is produced after memory bank assignment. In
the case of variables v and w, they respectively should
be moved to memory in two cycles because they are long
type variables.

Unfortunately, the memory bank assignment problem
that we face in reality is not always as simple as the one
in Figure 9. To illustrate a more realistic and complex
case of the problem, consider Figure 10, where the ac-
cess graph with five variables is shown.

We view the process of assigning memory banks as
the process of finding two partitions of nodes with the
minimum cost. The cost here is defined to be the sum-

v1

v2 v3

v5v4 1

3

4

1

4

4
2 v1

v3

v4

v5

X

Y

X

Y

(b) Maximum Spanning Tree

v1

v2 v3

v5v4 1

3

4

1

4

4
2

v2
(a) Access Graph

Figure 10. Access Graph and Maximum
Spanning Tree

mation of the total weights between the nodes in same
partition when the nodes are partitioned. Based on this
view, we applied a maximum spanning tree (MST) al-
gorithm to solve the memory bank assignment problem.
Two nodes connected by a tree edge selected by the al-
gorithm can be simply assigned to different banks be-
cause the tree found by MST does not form a cycle.
MST ensures that we can assign nodes conected via an
edge with heavy weight, which implies that the bank as-
signment we get would be optimal.

In our compiler, Prim’s algorithm [7] has been imple-
mented to find the maximum spanning tree. The overal
sequence of our memory bank assignment algorithm is
shown below. This algorithm is global; that is, it is ap-
plied across basic blocks. For each node, the following
sequence is repeatedly iterated until all AG nodes have
been marked.

1. Select an unmarked node � in the AG. If all nodes
of AG are marked, the algorithm is over.

2. Insert all edges of the selected node � in the priority
queue � and mark �.

3. If � is empty, then go to step 1. Select the highest
weighted edge � = (�,�) from � and remove � from
�.

4. If � and � are already marked, then go to step 3.

5. If either � or � is unmarked, then insert � in the
spanning tree T, select the unmarked node and go
to step 2.

Note in the algorithm that at least one node should al-
ways be marked in steps 4 and 5 because the edge of a
marked node was inserted to � in step 2. Figure 10 (b)
shows the spanned tree obtained after this algorithm is
applied to the AG given in Figure 10 (a). We can see
that X memory is assigned in even depth and Y memory
in odd depth in this tree.

3.4 Register Assignment

After memory banks are determined for each vari-
able in the code, real registers are assigned to the code.
Real registers are selected from those in the same regis-
ter class specified in the register class allocation phase.
For example, the register r0 in Figure 9 should be re-
placed by one real register among four candidates X0,
X1, Y0 and Y1, as indicated in Table 1. However, if the
instruction is a parallel move, there is an additional ar-
chitectural constraint that we should consider when we
assign a register: that is, data from each memory bank
should be moved to a predefined set of registers. Back
in the example, the variable a in the parallel move with
r0 is allocated to memory X. Therefore, only registers
eligible for r0 is confined to X0 and X1. If the two reg-
isters are already assigned to other instructions, register
spill will occur.

Using these two types of constraints (register classes
and architectural constraints), we assigned real registers
to the code. Figure 11 shows the resulting code after
register assignment is applied to the code shown in Fig-
ure 9 (c).

MOVE X:a,X0 Y:b,Y0
MOVE X:c,A Y:d,Y1
MAC X0, Y0, A X:e,X1 Y:f,B
MAC X1, Y1, B A0,X:low(v)
MOVE A1,X:high(v) B0,Y:low(w)
MOVE B1,Y:high(w)

Figure 11. Result after Register Assign-
ment

3.5 Memory Offset Assignment

As mentioned in Section 2, address registers are
used for parallel next-address computations. To ac-
cess memory locations with parallel moves, the lo-
cations should be addressed by address registers us-
ing the register-indirect addressing mode. The per-
formance of address computations is maximized by
auto-increment/decrement capabilities of AGUs because
DSPs provide special hardware to efficiently support fast
auto-increment/decrement addressing, thereby resulting

in higher instruction-level parallelism. However, to fully
utilize this addressing, variables must be properly placed
in memory.

We solved this problem, called the simple offset prob-
lem, using the maximum weighted path algorithm origi-
nally proposed by Leupers [5]. Figure 12 (a) shows the
sequences of variable accesses in X and Y memories in
Figure 11.

a c e v

a

c e

v

a c e vlow

(a) Variable access sequence

(b) Access graph

(c) Optimal variable ordering

b d f w
X memory Y memory

b d f wlow

b

d f

w

X memory Y memory

X memory Y memory

vhigh whigh

Figure 12. Memory Offset Assignment

To determine optimal variable orderings on dual
memory banks, we applied the maximum weighted path
algorithm to each memory bank X and Y independently.
Figure 12 (b) shows the AGs constructed by access se-
quences, and Figure 12 (c) shows optimal variable order-
ing solved by maximum spanning path algorithm. The
final code of our example is shown in Figure 13.

MOVE X:(r1)+,X0 Y:(r5)+,Y0
MOVE X:(r1)+,A Y:(r5)+,Y1
MAC X0, Y0, A X:(r1)+,X1 Y:(r5)+,B
MAC X1, Y1, B A0,X:(r1)+
MOVE A1,X:(r1) B0,Y:(r5)+
MOVE B1,Y:(r5)

Figure 13. Result after Memory Offset As-
signment

4 Comparison with Other Work

We evaluated the quality of our algorithm with a suite
of DSP benchmarks on a well-known commercial DSP,
the Motorola DSP56000 [6]. In this work, we take C
code as the source and, as the target, produce assembly
code for DSP56000 which is in turn given to the assem-
bler to produce the machine code. We used LCC [3] as
the C front-end for Zephyr.

In this section, we report performance of our algo-
rithm with the experimental results, and analyze the ef-
fect of each major compiler technique on the perfor-
mance. We also compare the best results of our cur-
rent implementation with Motorola’s native compiler,
and identify several additional techniques.

4.1 Other work

Much work of code generation for DSPs and embed-
ded processors has been done recently while it had not
been received much attention. Because the complex-
ity of these architectures has been increased incredibly,
software developments without supporting high-level
languages become so hard and impractical. In this work,
Araujo and Malik [2] proposed an optimal instruction
selection, register allocation, and instruction scheduling
algorithm for expression trees in linear time, for DSP
architecture, the Texas Instruments TMS320C25 [10].
However, this approach cannot support dual memory
banks, in spite of generating efficient codes for DSPs
in linear time.

Generally, the exploitation of dual memory banks
was responsible for the programmer. The programmer
had to allocate manually by using assembly language,
and it made difficult and inefficient exploitation of dual
memory banks. Code generation for dual memory banks
is addressed in Saghir et al. [8]. They presented two al-
gorithms - compaction-based (CB) data partitioning and
partial data duplication. However, a DSP model featur-
ing a large general-purpose register file is assumed.

Recently, Sudarsanam et al. [9] tried to use the dual
data memory optimally using simultaneous reference al-
location (memory bank + register allocation). In their
work, they delayed reference allocation until after code
compaction, and performed both phases of register allo-
cation and memory bank allocation simultaneously. The
constraint graph is constructed for reference allocation,
and simulated annealing algorithm is applied to labelling
it.

Although simultaneous optimization of register allo-
cation and bank allocation may lead the compiler to a
better solution in some cases, simulated annealing algo-
rithm may make compilation time indefinitely too long.
This long compilation time is caused by the intrinsic na-
ture of simulated annealing that needs to search for the
optimal solution from many possible candidates to be
labeled in the constraint graph. Although long compila-
tion may be tolerable in the embedded software develop-
ment to some extent, compilation still needs to be done
within reasonable time bounds because the longer com-
pilation time means the slower time-to-market in soft-
ware development.

4.2 Experimental Results

In this section, we present our recent experimen-
tal results that demonstrate the effectiveness of our ap-
proach by comparison with Sudarsanam et al.’s simu-
lated annealing-based approach. For this, we selected
the same code as them from DSPStone[11] and adpcm
benchmarks:

� complex multiply,

� convolution,

� fir2dim,

� iir biquad N sections,

� least mean square,

� matrix multiply 1,

� adapt quant,

� adapt predict 1,

� iadpt quant,

� scale factor 1,

� speed control 2, and

� tone detector 1.

The simulated annealing-based approach was experi-
mented on a single processor in a Sun Microsystems
Ultra Enterprise featuring eight UltraSPARC processors
and 1016MB of RAM. On the other hand, our approach
was experimented on a Intel Pentium III 666MHz and
512MB of RAM. The experiments were conducted on
different machine platforms because the compiler devel-
opment environments for both approaches were differ-
ent.

Table 2 compares the quality of code generated by
both approaches. The performance figures of simulta-
neous reference allocation in Table 2 are from their lit-
erature [9]. The results showed that we could achieve
similar quality compared with previous work, while our
compiler was incredibly fast. In Table 2, we could see
that the average improvement in code size and compi-
lation time due to our approach was 14.6% and 0.05
sec, respectively. From these benchmark results, we
found when quality of uncompacted code was relatively
low, the improvement in the code size was high. For
instance, ������� �������� and ����� ���� ����	�

showed high percentages of improvement, but on the
other hand, quality of uncompacted code showed poor
results. This caused that redundant code gave many
chances to compact the code in code compaction phase.

In simultaneous reference allocation, many different
types of costs and complexities represented in their con-
straint graph should be combined and solved simulta-
neously. This inevitably increased the complexity of
the problem of finding an optimal solution to memory
bank and register allocation. This increased complexity
of the problem led their approach to resort to simulated
annealing which explores the search space indefinitely
until it finds a reasonably optimal solution. According
to our analysis, the time complexity of our approach us-
ing Prim’s algorithm [7] for maximum spanning tree is
��������. This is partially due to our decoupled struc-
ture of code generation phases. As discussed earlier, by
decoupling the code generation into several phases, we
were able to simplify the complexity of the problem, yet
still achieving reasonable optimal solutions.

5 Conclusions & Future Work

Many DSP vendors provide a dual memory bank sys-
tem which allows the applications to access two mem-
ory banks simultaneously. Unfortunately, several exist-
ing compilers were not able to fully exploit this dual
memory feature. In this paper, we proposed decoupled
approach for supporting dual memory architecture: reg-
ister class allocation, code compaction, memory bank
assignment, register assignment, and memory offset as-
signment. This decoupled structure of code generation
phases led us to simplify our data allocation algorithm
for dual memory banks and to run the algorithm in rea-
sonable time. The experimental results showed that we
achieved the comparable results in code size and the en-
hanced results considerably in compilation time to re-
lated work.

A number of interesting topics still remain open for
future work. For instance, generally, an AGU has ad-
dress registers, mode registers, and offset registers. To
exploit all these registers efficiently, a suitable algorithm
for address register allocation is required, and an inter-
procedural analysis for passing arguments is indispens-
able in calling convention of dual memory architecture
because the caller have to know memory access pattern
of callee for passing arguments.

References

[1] A. Appel, J. Davidson, and N. Ramsey. The
Zephyr Compiler Infrastructure. Technical Report
at http://www.cs.virgina.edu/zephyr,
University of Virginia, 1998.

[2] G. Araujo and S. Malik. Code Generation for
Fixed-point DSPs. ACM Transactions on Design

Simultaneous reference allocation Our approach
Size Size Code Size Time Size Size Code Size Time

Benchmark (uncomacted (comacted Imprv. (sec) (uncompacted (compacted Imprv. (sec)
code) code) code) code)

complex multiply 33 30 9.1% 2 55 40 27.2% 0.04
convolution 49 45 8.2% 308 40 33 17.5% 0.02

fir2dim 178 158 11.2% 5482 109 96 11.9% 0.07
iir biquad N sections 132 128 3.0% 1632 124 102 17.7% 0.03

least mean square 115 102 11.3% 2776 176 137 22.1% 0.06
matrix multiply 1 89 85 4.5% 1011 129 105 18.6% 0.07

adapt quant 235 227 3.4% 4399 206 197 4.3% 0.03
adapt predict 1 231 209 9.5% 8105 247 216 12.5% 0.07

iadpt quant 85 81 4.7% 324 63 54 14.2% 0.05
scale factor 1 74 66 10.8% 266 60 55 8.3% 0.04

speed control 2 277 247 10.8% 5217 217 199 8.2% 0.1
tone detector 1 84 75 10.7% 536 75 65 13.3% 0.06

Table 2. Results for DSPStone Benchmark Programs

Automation of Electronic Systems, 3(2):136–161,
April 1998.

[3] C. Fraser. A Retargetable Compiler for ANSI C.
ACM SIGPLAN Notices, 26(10):29–43, Oct. 1991.

[4] S. Jung and Y. Paek. The Very Portable Optimizer
for Digital Signal Processors. In International
Conference on Compilers, Architectures and Syn-
thesis for Embedded Systems, pages 84–92, Nov.
2001.

[5] R. Leupers and P. Marwedel. Algorithms for Ad-
dress Assignment in DSP Code Generation. In
Internaltional Conference on Computer-Aided De-
sign, 1996.

[6] Motorola Inc., Austin, TX. DSP56000 24-Bit Dig-
ital signal Processor Family Manual, 1995.

[7] R. Prim. Shortest Connection Networks and Some
Generalizations. Bell Systems Technical Journal,
36(6):1389–1401, 1957.

[8] M. A. R. Saghir, P. Chow, and C. G. Lee. Ex-
ploiting Dual Data-Memory Banks in Digital Sig-
nal Processors. ACM SIGOPS Operating Systems,
pages 234–243, 1996.

[9] A. Sudarsanam and S. Malik. Simultaneous Refer-
ence Allocation in Code Generation for Dual Data
Memory Bank ASIPs. ACM Transactions on De-
sign Automation of Electronic Systems, 5(2):242–
264, April 2000.

[10] Texas Instruments, Austin, TX. TMS320C2x
User’s Guide. Revision C, 1993.

[11] V. Zivoljnovic, J.M. Velarde, C. Schager, and
H. Meyr. DSPStone - A DSP oriented Benchmark-
ing Methodology. In Proceedings of International
Conference on Signal Processing Applications and
Technology, 1994.

Code Size Efficiency in Global Scheduling for ILP Processors

 Huiyang Zhou Thomas M. Conte

Center for Embedded Systems Research

Department of Electrical and Computer Engineering

North Carolina State University

{hzhou,conte}@eos.ncsu.edu

Abstract

In global scheduling for ILP processors, region-
enlarging optimizations, especially tail duplication, are
commonly used. The code size increase due to such
optimizations, however, raises serious concerns about
the affected I-cache and TLB performance. In this paper,
we propose a quantitative measure of the code size
efficiency at compile time for any code size related
optimization. Then, based on the efficiency of tail
duplication, we propose the solutions to two related
problems: (1) how to achieve the best performance for a
given code size increase, (2) how to get the optimal code
size efficiency for any program. Our study shows that
code size increase has a significant but varying impact
on IPC, e.g., the first 2% code size increase results in
18.5% increase in static IPC, but less than 1% when the
given code size further increases from 20% to 30%. We
then use this feature to define the optimal code size
efficiency and to derive a simple, yet robust threshold
scheme finding it. The experimental results using
SPECint95 benchmarks show that this threshold scheme
finds the optimal efficiency accurately. While the optimal
efficiency results show an average increase of 2% in
code size, the improved I-cache performance is observed
and a speedup of 17% over the natural treegion results is
achieved.

1. Introduction

The I-cache performance for an application is
determined by its working set size. If the program size is
exceedingly large compared to the I-cache or TLB size,
it may result in high miss rates, which in turn degrades
the performance of the processor. On the other hand, in
the scheduling phase of an ILP (instruction-level-
parallelism) compiler, there is a lot of effort placed on
enhancing the performance by exploiting the available
ILP. As larger scheduling regions tend to provide more

ILP, region-enlarging optimizations are commonly used
in or before the instruction scheduler. However, those
optimizations often cause an increase in static code size.
Loop unrolling and loop peeling are examples of such
optimizations in cyclic scheduling. In acyclic global
scheduling, tail duplication (or code replication) is the
most commonly used region enlarging / ILP enhancing
optimization. Even with its evident impact on code size
increase, it is applied due to its capability to remove the
side entries of a trace [5], [13] and to avoid the
conditional / unconditional branches [12]. Our
experience is that other code size related optimizations in
acyclic scheduling, such as code downward motion
through branches and recovery code for speculations
[15], have less impacts on both ILP and code size than
tail duplication.

In the paper, we study the code size efficiency of
code-size-related optimizations in acyclic scheduling,
especially the tail duplication. We then present a very
efficient way of regulating tail duplication for global
instruction scheduling. To do this, we first define a
quantitative measure of the code size efficiency that is
for any code size related optimization. The measure is
calculated as the ratio of ILP improvement (in terms of
static IPC) to code size increase. The static IPC is the
instruction-per-cycle measured at compile time to show
the ILP exploitation based on instruction scheduling.
Based on this general description, two more specific
definitions are formulated: average code size efficiency
and instantaneous code size efficiency. The average code
size efficiency measures the ILP improvement at the cost
of code size for overall applications of code size related
optimizations. The instantaneous code size efficiency is
used for an individual application of an optimization
based on the current code size.

As the static IPC is hard to calculate before the
schedule time, we propose a heuristic to estimate the
expected execution time of a multi-path region using a
dependence bound and a resource bound. The
experimental results show that the treegion scheduler

produces schedules very close to the expected execution
time (92% to 97% accuracy). Then, two related problems
are investigated based on the instantaneous code size
efficiency of different tail duplication candidates: (1)
how to achieve the best speedup for a given size code
increase, i.e., how to get the best average code size
efficiency for a given code size; and, (2) how to get the
optimal code size efficiency for any program. To find the
solution to the first problem, all the possible tail
duplication candidates in the program scope are ordered
based on their instantaneous code size efficiency. The
candidates are then chosen based on this order until the
estimated code size limit is reached. The simulation
results using SPECint95 show that for a modest pre-
scheduling code size increase of 2% over the original
size, the scheduled code gains 18.5% speedup and a
1.6% code size decrease1. Another observation from the
simulation results is that for any benchmark, the initial
code size increase over the original has a much larger
impact on static IPC than the same increase over an
already bloated program— e.g., the initial 2% code size
increase result in IPC change of 18.5%, while the IPC
change is less than 1% when pre-scheduling code size
limit varying from 20% to 30%.

Based on above observations, we define the optimal
code size efficiency for a program and propose a simple,
yet robust threshold scheme to find the optimal solution.
This threshold is derived mathematically to be the code
size efficiency measure that we proposed before. The
robustness of the scheme (i.e., the effective range of the
threshold) is determined by the rate of static IPC change
over code-size increase around the optimal solution. The
simulation results show that this simple threshold scheme
finds the optimal solution for every benchmark with
average post-scheduling 2% code size increase over the
original size. When taking the cache effects and branch
prediction impact into account, it results in a 4%
decrease on I-cache miss penalties (for a 32KB I-cache),
due to the increased sequential locality and more
compact schedule, and a 17% speedup overall over the
natural treegion results (treegion without any tail
duplication). The experiment with different I-cache sizes
shows that the speedup also holds for both small I-caches
of 16KB and large I-caches of 64KB [21].

The remainder of the paper is organized as follows.
Section 2 briefly introduces the treegion-based global
scheduling, and the simulation methodology of the
experiments. The quantitative measures of the code size
efficiency are discussed in Section 3. The optimal tail
duplication for scheduling under a given code size
constraint is contained in Section 4.1 and the solution to

1 This decrease is due to the general operation combining [4] exploited
by our global scheduler.

the optimal code size efficiency is discussed in Section
4.2. Finally, Section 5 concludes the paper.

2. Treegion-based global scheduling and
simulation methodology

2.1. Treegions and treegion-based global
scheduling

In this paper, treegion-based global scheduling [1],[2]
is used as the acyclic scheduling framework. However, it
needs to be pointed out that although the experimental
results are obtained using treegion scheduling, the same
methodology of this code size efficiency study is
applicable to other global scheduling approaches, such as
superblock scheduling [5] and hyperblock scheduling
[7].

Treegion-based global scheduling aims for high
performance for wide issue VLIW / EPIC processors
although it can be applied to superscalar processors as
well. It has two steps: treegion formation [1] and tree
traversal scheduling (TTS) [2]. A treegion is a single-
entry / multiple-exit nonlinear region that consists of
basic blocks (BBs) with control-flow forming a tree, as
illustrated in Figure 1a. Based on the control flow graph
(CFG) in the Figure, two treegions are formed. The
treegions that are formed without any tail duplication are
referred to as natural treegions. When the tail
duplication is applied, a larger treegion can be formed.
For the example CFG in Figure 1a, after the BB7, BB8,
and BB9 are duplicated and the corresponding
unconditional branches are removed, one treegion is
formed containing all the BBs in the CFG, as shown in
Figure 1b. The trade-off for exposing ILP through
treegion formation is the code-expansion that results
from duplicates of BB7, BB8 and BB9. Note that in this
paper, the tail duplication is performed on the unit of
natural treegion (i.e., merge points), e.g., in the example
of Figure 1, the entire treegion 2 is duplicated instead of
the BB7. In the previous treegion scheduling works, the
tail duplication is performed based on a heuristic
discussed in [1], which we refer to as Havanki’s heuristic
and briefly describe it as follows. Havanki’s tail
duplication heuristic is based on several factors: code
expansion limit, path count (the number of paths in a
treegion) and the number of the incoming edges to a
merge point. The code expansion limit is a global control
parameter, while the other two are based on the topology
of the CFG. When any of those limits is reached, the tail
duplication will stop and a new treegion will be formed.
The advantage of this heuristic is that it solely depends
on the topology of the CFG and it is not susceptible with
the profiling errors.

(a)

(b)
Figure 1. (a) The CFG and the treegions constructed;
(b) The treegion constructed after the tail duplication

During the tree traversal scheduling (TTS), the BBs
are scheduled in a predetermined traversal order based
on treegion topology and profile information. When a
BB is currently being scheduled, those instructions that
are dominated by the BB will be considered as
scheduling candidates until the block-ending branch is
scheduled. Those candidate operations are scheduled
based on an order determined by a heuristic that includes
their execution frequency, exit count, and data
dependence height. The details of tree traversal
scheduling can be found in [2],[4].

2.2. The code size increase in treegion
scheduling

In treegion based scheduling, most code size increase
is from tail duplication during treegion formation2. In
TTS, downward code motion and general operation
combining also contribute to code size changes.
Downward code motion happens when the block-ending
branch is scheduled earlier than some instructions in the
same BB. To maintain the semantics of the program,

2 A small additional code size increase is caused by copy operations to
preserve liveness beyond the treegion scope.

those instructions need to be placed at every possible exit
path of the branch, which may introduce some code
replication. In TTS, this downward code motion is
combined with partial dead code removal so that only
instructions producing a variable live at both exit paths
will be replicated. The general operation combining is
used at scheduling time to remove redundant operations.
When one operation is selected for scheduling, it is
compared to other operations that have already been
scheduled in the same cycle. If a scheduled operation is
found to have the same opcode and source operands, the
candidate operation is then merged into the scheduled
operation with necessary renaming. Since a treegion
contains multiple execution paths, it exploits more
opportunities for general operation combining than those
of linear regions. As a result, the scheduled code will
have a reduced code size. When both downward code
motion and general operation combining are used, the
benchmarks in SPECint95 show an average of 3.5% code
size decrease for treegions formed without any tail
duplication (i.e., using natural treegions). When tail
duplication is performed, there are more chances for
general operation combining. For the treegions formed
using Havanki’s heuristic, 12.8% code size decrease is
observed at scheduling time while the effective overall
code size increase is about 70% (i.e., the code size
increase would be 82.8% without general operation
combining).

2.3. Simulation methodology

The algorithms for the code size efficiency study in
this paper and for treegion based global scheduling are
implemented in LEGO compiler [11], a research ILP
compiler developed for high performance VLIW / EPIC
[9] style microprocessors at North Carolina State
University. The compiling process of LEGO compiler is
as follows. All programs are first compiled with classic
optimizations using either (1) the IMPACT compiler
from University of Illinois [10] and converted to Rebel
textual intermediate representation using the Elcor
compiler from Hewlett-Packard Laboratories [8], or (2)
read directly from IA-64 assembly generated from the
Intel or GCC compilers. Then, the LEGO compiler is
used to profile code, form treegions and schedule the
instructions. After instrumentation is added for trace-
based timing simulation, the scheduled intermediate code
is either converted into an inline execution simulator that
is emitted as C code (the technique used in this paper) or
emitted as IA-64 assembly. Finally, a trace-based timing
simulation runs together with an execution simulation to
obtain the simulation results while ensuring the
correctness of the program. In our experiments, all
benchmarks in SPEC95int suite run to completion.

BB1 Treegion 1

Treegion 2

BB2 BB3

BB4 BB5

BB6 BB7

BB8 BB9

Treegion 1 BB1

BB2 BB3

BB4 BB5

BB7’
BB6 BB7

BB8’ BB9’
BB8 BB9

For the simplicity, an 8-way universal issue machine
model is used in this study. The specification of the
model is show in Table 1.

Table 1. The specification of the machine model used
in the experiment

 Specification
Execution Dispatch/Issue/Retire bandwidth: 8;

Universal function units: 8; Operation
latency: ALU, ST, BR: 1 cycle; LD,
floating-point (FP) add/subtract: 2 cycles.

I-cache Compressed (zero-nop) and two banks with
2-way 16KB each bank [19].
Line size: 16 operations with 4 bytes each
operation. Miss latency: 12 cycles

D-cache Size/Associativity/Replacement: 64KB/4-
way/LRU Line size: 32 bytes Miss Penalty:
14 cycles

Branch

Predictor

G-share style Multiway branch prediction
[20] Branch prediction table: 214 entries;
Branch target buffer: 214 entries/8-
way/LRU. Branch misprediction penalty:
10 cycles

3. The quantitative measure of code size
efficiency

3.1. Code size efficiency for code size related
optimizations in global scheduling

The motivation of a region enlarging optimization in
global scheduling is based on the premise that larger
scheduling regions can exploit more ILP. With tail
duplication as an example optimization, Figure 2 shows
the relationship between static code size and
performance for the benchmark compress. Note that
although the working size of compress is small, it
exemplifies the relationship between the code size and
ILP exploitation that are shared by other larger
benchmarks. The experimental results in Figure 2 show
code sizes vs. ILP for BB scheduling and treegion
scheduling. For treegion scheduling, three possible tail
duplication strategies are presented: natural treegions,
tail duplication based on Havanki’s heuristics, and tail
duplication for all the possible merge points that have
execution frequency larger than zero (‘All_Possible’). In
the experiment, the ILP is measured using static IPC,
which is the instruction-per-cycle estimated at compile
time to show the ILP exploitation based on instruction
scheduling. Also, when calculating this static IPC, the
dynamic instruction count (IC) based on BB scheduling
code is used for treegion-scheduling results to show the
effective IPC. The code size is measured using the

relative ratio, i.e., the ratio of resulted code size over the
original code size.

129.compress

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85
relative code size

St
at

ic
 I

P
C

All_Possible

Havanki’s heuristic

BB

Natural_tree

Figure 2. The relationship between performance and
static code size for benchmark compress

As shown in Figure 2, natural treegion scheduling
shows a 3% code size decrease over the original code
size (the decrease is due to the general operation
combining of TTS) and 20% speedup over BB
scheduling. If tail duplication is applied, more ILP will
be exploited (up to another 21% speedup) in the global
scheduling phase with the cost of an increase in code size
(up to 76%). Base on these observations, it seems that
the natural treegion is a good starting point for code size
related optimization, and that the ratio of the change in
static IPC over the change in code size provide a
reasonable measure of the efficiency of the code size
expanding optimizations at compile time. It is noted here
that although the dynamic IPC is more representative of
the real performance, it depends on many factors
including the branch prediction accuracy, cache
performance, code layout and other optimizations, which
are hard to quantify at compile time. The static IPC, on
the other hand, indicates the ILP exploitation at compile
time and is the goal to maximize with compile-time
optimizations. So, the static IPC is used as the
performance indicator in our measure of the tradeoff
between ILP exploitation and the code size increase and
the dynamic IPC effects are examined in Section 4.2.

Here, we define two different types of code size
efficiency based on different forms of the ratio of IPC
changes over relative code size changes.

Average code size efficiency: This type of efficiency
provides a measure of the average ILP provided by code
size related optimizations at the cost of a unit code size
increase and it is defined as follows:

treegionnaturalcandidate

treegionnaturalcandidate
ave sizecodesizecode

IPCIPC
Efficiency

_

_

__ −
−

=

 (1)
In Equation (1), the term

(
treegionnaturalcandidate IPCIPC _−) represents the ILP

Table 2. The accuracy of the heuristic to compute the expected execution time
Benchmark compress gcc go ijpeg li m88ksim perl vortex
Ratio of execution time based
on scheduled code over
expected execution time

1.036 1.075 1.078 1.047 1.071 1.067 1.081 1.063

improvement of the candidate optimizations and the term
(

treegionnaturalcandidate sizecodesizecode ___ −) represents the

cost of such optimizations in terms of static code size.
Graphically in Figure 2, the average code size efficiency
represents the slope of a line connecting the natural
treegion result and the one under consideration (i.e.,
‘candidate’). With this quantitative measure, the
comparison can be made for different code size related
optimizations and for the different applications of the
same optimization. For example, based on tail
duplication results in Figure 2, it can be seen that the
Havanki’s heuristic produces a slightly better code size
efficiency than duplicating all the possible candidates.
Note that if the efficiency of an optimization is
calculated as negative, it represents one of two extreme
cases: (a) the optimization increases the IPC and
decreases the code size— this optimization should
always be applied, or (b) the optimization decreases the
IPC at the cost of more code size— this optimization
usually needs to be avoided.

Instantaneous code size efficiency: this type of
efficiency measures the ILP improvement of an
individual application of an optimization based on the
current code size, and it is defined as follows:

napplicatioindivialbeforenapplicatioindivialafter

napplicatioindivialbeforenapplicatioindivialafter

inst

sizecodesizecode

IPCIPC

Efficiency

__ −
−

=

 (2)
Using the tail duplication as an example optimization,

there could be many merge points in a program as
candidates for this optimization. Then, for each possible
tail duplication (i.e., an individual application), there is
an instantaneous efficiency associated with it.

For the tail duplication example in Figure 2, if we
imagine that there is a curve representing the relationship
between IPC and code size of tail duplication
optimization, the instantaneous efficiency is the tangent
slope of the curve (i.e., the derivative of the curve) at the
point corresponding to the current code size. The average
code size efficiency can then be viewed as the effect of
averaging the instantaneous efficiency of all the tail
duplications that occurred in global scheduling.

3.2. A heuristic to compute efficiency using
expected execution time

Since the code size efficiency calculation requires the

(static) IPC measurement, which is not known before the
schedule time, we propose a heuristic to compute the
expected execution time so that the IPC changes can be
approximated by the changes in expected execution time.
This heuristic is based on the data dependence bound
and resource bound and is defined as Equation 3 for a
multi-path region, e.g., a treegion.

()[]∑ ∗

=

ipath
ipathipathipath

Expected

FreqboundresourcebounddependencedataMax

TimeExe

_
___ _,__

_

(3)
In Equation 3, the expected execution time of a region

is computed as the sum of the expected execution time of
each path, which is in turn computed as maximum of the
data dependence bound and the resource bound of the
path. Similar to the performance bounds proposed in
[14], [17], we use the true data dependence height of
Data Dependence Graph (DDG) as the dependence
bound. The resource bound is calculated using a
technique similar to the ResMII calculation from
iterative modulo scheduling [16]. The execution
frequency for each path,

ipathFreq _
, is obtained from

profiling information.
The effectiveness of this heuristic is verified by

comparing the expected execution time to the treegion
scheduled results, as shown in Table 2. Here, the
execution time of the scheduled code is measured using a
scoreboard-based simulation, which enforces the data
dependence and resource dependence. In the benchmark
gcc, for example, the overall execution time based on
scheduled result is 7.5% larger than the expected
execution time using this heuristic. The mismatch is
because the data dependence bound is calculated
assuming all the false register dependencies can be
removed by software renaming, and that the control
dependencies can be minimized by treegion multiway
branch transformations [4]. This assumption is too
optimistic as liveness beyond the BB scope may require
a copy instruction to be inserted. Also, the renaming may
not be applicable to some special purpose registers, such
as parameter passing registers.

3.3. The code size efficiency for tail duplication
optimization

When we consider tail duplication as the optimization
of interest, for each control edge entering a merge point,
we can calculate its instantaneous code size efficiency

using Equation 2 so that we can selectively apply the tail
duplications based on their efficiencies. In treegion-
formed code, four types of tail duplication candidate can
be encountered based on the dominance relationship and
number of edges entering the merge point, as shown in
Figure 3.

Figure 3. Four types of possible tail duplication in
treegions (the edge marked with ‘o’ representing the
edge to be removed by the candidate tail duplication,
the shaded treegion represents the duplicated region):
(a) Type-1: The parent tree dominates the candidate
tree and there are 2 edges entering the candidate tree;
(b) Type-2: The parent tree dominates the candidate
tree and there are more than 2 edges entering the
candidate tree; (c) Type-3: The parent tree does not
dominate the candidate tree and there are 2 edges
entering the candidate tree; and (d) Type-4: The
parent tree does not dominate the candidate tree and
there are more than 2 edges entering the candidate
tree.

As shown in Figure 3, after the type-1 tail duplication,
the resulted treegion (the parent_tree’ in the dashed line)
will absorb both the original and the duplicate copy of
the candidate tree. For type-3 tail duplication, the
original candidate tree will be absorbed into parent tree 2
and the duplicate will be included in the parent tree 1.
For the other two types, only the duplicate of the
candidate tree will be absorbed.

4. Optimal code size efficiency in global
scheduling

Based on the quantitative measures of the code size
efficiency of code size related optimizations such as tail
duplication, one useful goal is to find the optimal code
size efficiency achievable for the optimization. The term
‘optimal’ here has two different meanings: (a) if there
exists a limit on code size, the optimal solution is
maximizing the IPC while satisfying the code size
constraint (i.e., find the best average code size efficiency
for a given code size). Although code size constraints are
more common in embedded processors [18] than high
performance EPIC processors, it is useful when we want
to limit the whole or working program size (i.e., the part
of the code with execution frequency larger than zero)
below the level-1 I-cache size. The solution to it can be
represented using a curve showing the best possible IPC
for any code size. The second ‘optimal’ meaning is (b) if
there is no such a code size limit, the optimal solution is
a good trade-off between ILP and code size so that the
IPC is maximized at the minimal cost of code size
increase. The meaning of this best trade-off will be clear
once we obtain the curve of best IPC vs. code size based
the solution to (a). Using the tail duplication as an
example code-size-related optimization, Section 4.1
provides an algorithm to find the best efficiency for a
given code size, and Section 4.2 defines the optimal
efficiency problem without code size constraints and
derives a simple, yet robust threshold scheme.

4.1. Optimal code size efficiency for a given code
size limit

In order to find best code size efficiency of a given
code size for global scheduling using tail duplication, we
first compute the instantaneous code size efficiency for
all possible tail duplication candidates. Then, the
candidates are selected based on their efficiencies until
the size constraint is reached. The detailed algorithm is
shown in Figure 4. As shown in Figure 4, we use an
iterative approach for tail duplication. In each iteration of
steps 2 and 3, the candidate with best instantaneous code
size efficiency will be chosen and performed if such a
tail duplication will not exceed the code size constraint.
Although it may be possible to find the ‘real’ optimal
solution (i.e., tail duplications with best IPC) with an
exhaustive search algorithm, like what used in
determining best function inlining under a code size limit
[18], the complexity of such a search approach is further
increased by the fact that one tail-duplication may
change the efficiency of other candidates and increase
the number of the possible tail duplications.

(a) (b)

(c) (d)

Parent_tree Parent_tree

Parent_tree1 Parent_tree1

Parent_tree2
Parent_tree2

Parent_tree’ Parent_tree’

Parent_tree1’ Parent_tree1’

Parent_tree2’

Candidate
tree Candidate

tree
Candidate

tree

Candidate tree
Candidate

tree

Candidate
tree

Parent_tree2’

Algorithm for optimal tail duplications under code
size constraints

0. Mark the loop edges so that the tail duplication
will not overlap with cyclic optimization such
as loop unrolling.

1. Calculate the instantaneous code size
efficiency for all possible tail duplication
candidates in the program scope.

2. Find the one with best code size efficiency.
3. If the selected candidate satisfies the code size

constraint, perform the tail duplication and
update the code size efficiencies of the
candidates that are affected by the tail
duplication process.

4. Repeat steps 2-3 until the code size limit is
reached.

Table 3. The base code size and IPC for each benchmark

Benchmark compress gcc go ijpeg li m88ksim perl vortex

Static Operation Count 1439 368960 59853 40835 14487 33629 76026 149751

Static IPC 2.395 2.24 1.86 2.49 2.0 2.03 2.19 2.51

The algorithm described in Figure 4 was implemented
in LEGO compiler and experimented on SPECint95
benchmarks. Table 3 shows the base static IPC (using
natural treegion scheduling) and the original static code
size in terms of operation count for each benchmark.
Figure 5 shows the experimental results of benchmark
compress where the target code size increases are 0%
(i.e., natural treegion), 2%, 5%, 10%, 15%, 20%, 30%,
and 80%. The results for tail duplication based on
Havanki’s heuristics are also included. Note that due to
the effect of the general operation combining in TTS, the
scheduled code size is actually less than the target size.

Figure 4. The algorithm for best tail duplication for
global scheduling under code size constraints

129.compress

2

2.2

2.4

2.6

2.8

3

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Relative code size

S
ta

ti
c

IP
C

best ILP for a given code size

tail duplication using Havanki’s heuristic

Figure 5. The relationship of ILP vs. code size of
benchmark compress

Several important observations can be made from
Figure 5. First, the code size increase due to tail
duplication has significant impact on ILP, e.g.,
performing tail duplication up to 5% of its original size
will results in 10.6% speedup and 2.4% increase in
scheduled code size over the original code size.
Comparing to the tail duplication based on Havanki’s
heuristics in traditional treegion formation, the code size
efficiency is greatly improved by the increased IPC and
decreased code size. There are two main reasons for
relatively low efficiency of Havanki’s heuristic. First, the
heuristic is mainly based on local features and does not
account for the profile information. When the treegion
formation starts, the treegion expands by tail duplication
until the path count limit / code size limit is reached or
there are too many incoming edges at the next merge
point. As a result, it duplicates many codes that have low
execution frequency and fail to do so for some basic
blocks or small treegions with high execution frequency.
For example, in Figure 3b, if the number of the incoming
edges to the candidate tree is beyond the predetermined
limit, the candidate tree will not be duplicated even it has
a high execution frequency. Secondly, Harvanki’s
heuristic does not take account of the potential speedup
when making a decision of whether a candidate should
be duplicated. As a result, it may choose to duplicate and
combine treegions that do not have reduced schedule
length.

Another important observation based on Figure 5 is
that the impact on ILP of code size decreases rapidly as
given code size increases, e.g., the first 2% code size
results in 7% IPC changes, while code size increase from
20% to 30% only results less than 0.5% IPC changes.
This phenomenon is expected because it is a known fact
that most (e.g., 90%) of the execution time is spent on a
small amount (e.g., 10%) of the static code for many
programs. As a result, once we finish duplicating tail
treegions in that small amount (10%) of the code, further
duplications will have relatively small effects on
execution time, (i.e., those tail duplications will have low
instantaneous code size efficiencies). This feature are
also verified with other benchmarks in our experiments,
e.g., the relation between ILP and code size of the
benchmark vortex (the notorious benchmark gcc has a
very similar curve), as shown in Figure 6, where the
target code size increases are 0%, 2%, 5%, 10%, 20 %,
30%, and 80%.

0%
2%

5%

80%

Table 4. The statistics of operations with different execution frequencies

Benchmark Maximal
Execution

Frequency (MEF)

Percentage of ops with
execution frequency <

0.01%*MEF

Percentage of ops with
execution frequency <

0.1%*MEF

Percentage of ops with
execution frequency <

1%*MEF
compress 0.4 Million 55.04% 64.07% 64.26%

vortex 12 Million 84.32% 92.37% 98.45%

147.vortex

2.5

2.7

2.9

3.1

3.3

3.5

0.8 1 1.2 1.4 1.6 1.8 2 2.2
Relative code size

S
ta

tic
 IP

C

best ILP for a given code size

tail duplication using Havanki’s heuristic

Figure 6. The relationship of ILP vs. code size of
benchmark vortex

Figure 6 shows the dramatic IPC change (around 34%)
for the first 2% code size increase, which also shows
14% speedup and 60% less code size over the traditional
treegion formation approach. Two interesting
observations can be made from Figure 5 and 6. First, the
initial code size increase show much more IPC
improvements in benchmark vortex than in benchmark
compress, which means the tail duplications resulting in
the initial code size increase in vortex have much higher
efficiency than those in compress. The high efficiency of
those tail duplications in vortex, based on our analysis of
the program, is mainly due to high execution frequency
of those codes (i.e., in the heavily executed portion of
vortex, many control edges are worthwhile to be
removed by tail duplication). Secondly, the ‘diminishing
returns’ happen quickly for benchmark vortex, after the
code size increase beyond 2%, comparing to benchmark
compress, which suggests that for benchmark vortex a
smaller percentage of code is frequently executed than
benchmark compress. This can be verified with the
statistical characteristics of the program, as shown in
Table 4. From Table 4, it can be seen that higher
percentage of the code of benchmark vortex are
infrequently executed than benchmark compress. Given
2% code size increase for vortex, the portion of the
program with high execution frequency has been
explored for possible tail duplications while for
compress, such code size increase is just not enough for
the possible candidates in frequently executed portions.

In terms of the average of all benchmarks, the initial
2% code size increase results in 18.5% speedup over
natural treegion and 1.6% code size decrease over the
original code size.

4.2. Finding the best code size efficiency for
global scheduling using tail duplication

Based on the characteristics of the curve representing
the relationship between best IPC and code size,
especially the ‘diminishing returns’ phenomenon, we can
define the ‘best code size efficiency’ as the point where
the diminishing returns starts, as point A (i.e., the knee of
the curve) shown in the exemplary ILP vs. code size
curve in Figure 7.

Figure 7. The solution to optimal code size efficiency

In consideration of how to find this optimal point
along the curve, we can first simplify the curve as two
straight lines (as the two dashed lines in Figure 7) and
the optimal solution then becomes point A’. In order to
find A’, we can use a threshold on the first derivative of
the curve, which will have a shape of bold solid lines
shown in Figure 8.

Figure 8. The derivative of the IPC vs. code size curve

From Figure 8, it can be seen that point A’ can be
found with a threshold on the first derivative of the IPC

Relative code size

IPC

A

l

A’

relativeSizedCode

dIPC

_

0

K

K2

0%

2%
5%

80%

Table 5. The experimental results for threshold k = 0.577

Benchmark compress gcc go ijpeg li m88ksim perl vortex

Efficiency threshold 3354 467 1543 3657 2436 625 3417 1820

Resulting Relative
Code Size

1.09 1.024 1.06 0.998 1.0 1.0 0.969 1.027

Resulting IPC 2.76 2.71 2.165 2.734 2.487 2.278 2.895 3.416

IPC (20% code size
increase)

2.79 2.73 2.206 2.745 2.492 2.300 2.910 3.444

Algorithm for finding the best code efficiency based
on tail duplications

0. Mark the loop edges so that the tail duplication
will not overlap with cyclic optimization such as
loop unrolling and calculate the threshold using
Equation 4 with k setting to anywhere between
tan(π/6) to tan(π/12).

1. Calculate the instantaneous code size efficiency
for all possible tail duplication candidates in the
program scope.

2. If there is a candidate whose instantaneous code
size efficiency is above the threshold, duplicate
the candidate and update the efficiency of
affected candidates, repeat until there are no
more candidates.

over code size and the threshold can be anywhere
between zero and K, where K is the slope of the line l in
Figure 7. In other words, the slope K determines the
robustness of the threshold scheme. Since the real IPC
vs. code size curve is not linear, its derivative will take a
shape similar to the curve in dashed lines in Figure 8.
Although the effective threshold range (i.e., the
robustness) is decreased, say to from K2 to K1, it is still
a relative large range due to the large slope of the IPC vs.
code size curve around the ‘knee’ point. Thus, a large
variation in the threshold on the first derivative from K1
to K2 will only result in relatively small variations from
optimal point A.

As mentioned in Section 3.1, the instantaneous code
size efficiency is actually the first derivative of the IPC
vs. code size curve. So, this scheme becomes simply a
threshold on the instantaneous code size efficiency and
this threshold can be any value between K1 and K2. The
meaning of K1 and K2 can be described in Figure 9,
which is the zoomed area around the optimal point A in
Figure 7. In Figure 9, points B and C are close to optimal
solution, point A, and they represents the region of
acceptable solutions. Then, the instantaneous code size
efficiencies of point B and C (i.e., the slopes of the
dashed lines l1 and l2 in Figure 9) determines the
robustness of the threshold scheme.

Figure 9. The robustness of the threshold scheme
(determined by the slope of the tangent lines at points
B and C)

As the expected execution time is used to
approximate the static IPC, the threshold scheme on

instantaneous code size efficiency can be further derived
as a threshold on the ratio of changes in execution time
over changes in code size (the derivation details are in
the companion technical report [21]):

staticstaticabsolute ICIPC

timeExek

dSize

timeExed

∗
∗≥− _)_((4)

In Equation 4, ICstatic represents the static operation
count of the program (i.e., the static code size), k is the
threshold on instantaneous code size efficiency and the
term d(-Exe_time) represents the decrease in the
execution time. The terms Exe_time and IPCstatic
represent the global features of the program. In this
paper, the execution time and IPC based on natural
treegion scheduling shown in Table 3 are used. Now, the
algorithm to find the best code size efficiency is a simple
threshold approach, as shown in Figure 10.

Figure 10. Algorithm for finding the best code size
efficiency based on tail duplication

As the threshold k represents the slope of tangent line
around the best solution point, one reasonable range for k
is from tan(π/6) to tan(π/12) as the corresponding
tangent lines will hit the points close to the knee of the
curve. For example, if we choose k as 0.577
(corresponding to the case that the tangent line at optimal
point has the angle of π/6) for benchmark vortex, the
threshold becomes 1820, which means that if the tail

Relative code size

IPC

A B

C

l1

l2

Table 6. The experimental results for threshold k = 0.268

Benchmark compress gcc go ijpeg li m88ksim perl vortex

Efficiency threshold 1561 217 716 1698 1131 290 1587 846

Resulting Relative
Code Size

1.13 1.05 1.11 1.006 1.003 1.01 0.972 1.045

Resulting IPC 2.78 2.72 2.192 2.739 2.489 2.285 2.898 3.427

duplication candidate can result in more than 1820 cycles
speedup at cost of 1 additional operation, then this tail
treegion should be duplicated. The thresholds calculated
for all the benchmarks and the resulting (static) IPC and
code size combinations after treegion scheduling are
shown in Table 5. The IPC resulting from 20% code size
increase is also included in the table.

From the results in Table 5, it can be seen that the
benchmarks can be grouped into three categories. The
first category has the feature that the code size efficiency
reaches the ‘diminishing returns’ very soon (i.e., the
resulted code size is same or less than the original code
size while the static IPC almost reaches the maximum).
Benchmarks ijpeg, li, m88ksim and perl belong to this
category. For the second category benchmarks including
gcc and vortex, such diminishing returns happen with a
relatively small increase from the original code size
(2.4% and 2.7% respectively for gcc and vortex). The
other two benchmarks compress and go are in the third
category, which require more code size increase to reach
the maximal IPC.

If we change the threshold on instantaneous code size
efficiency to 0.268 (corresponding to the case that the
tangent line at optimal point has the angle of π/12), the
calculated thresholds, the resulting IPC and code size
combinations after treegion scheduling are shown in
Table 6. As expected, for benchmarks in first and second
category, the variation in k results in very small change
in the results. For benchmarks in the third category, such
variation results in around 5% change in code size and
1% in performance, which, in our opinion, are still valid
solutions for optimal code efficiency.

Here, we pick one benchmark in each category to
show graphically where the points are found with the
threshold scheme. The benchmark m88ksim is picked
from the first category and its IPC vs. code size curve is
shown in Figure 11 using the best IPC results for given
code size increase for 0%, 2%, 5%, 10% and 20%. From
Figure 11, it can be seen that the threshold scheme
locates the optimal point accurately. Benchmarks vortex
and compress are chosen from the second category and
the third category respectively and their IPC vs. code
size curve can be seen in Figure 5 and 6. From those
figures, we can conclude that this simple threshold
scheme finds the best efficiency solutions accurately.

124.m88ksim

2
2.05
2.1

2.15
2.2

2.25
2.3

2.35
2.4

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
relative code size

S
ta

ti
c

IP
C

best IPC for given code sizes

threshold is 0.577

threshold is 0.268

Figure 11. The best code size efficiency found using
different thresholds for benchmark m88ksim

To investigate the associated I-cache performance due
to the code size increase, a medium-sized I-cache (32KB
as specified in Table 1) is used in the detailed timing
simulation. In this experiment, we compare the I-cache
performance of natural treegion results to the optimal
efficiency results obtained with threshold as 0.577.
Figure 12 shows the I-cache miss rates of each
benchmark for these two cases.

Miss Rates for a 32K 2-bank 2-way I-Cache

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

co
mpr

es
s

gc
c go

ijp
eg li

m88
ks

im pe
rl

vo
rte

x

M
is

s
R

at
e

I-cache miss rate of Td_Opt
I-cache miss rate of natural tree

Figure 12. I-cache miss rates for natural treegion and
the optimal efficiency results obtained with threshold
as 0.577

In Figure 12, benchmarks gcc and go show significant
increases in I-cache miss rate due to the code size
increase of the optimal efficiency results while other
benchmarks exhibit similar or smaller I-cache miss rates.
The reason for the decreases in I-cache miss rates is
mainly due to the effect that the tail duplication in
optimal efficiency results increases the sequential
locality of the frequently executed regions, as observed

Ideal and Realistic Performance for Different Treegion Formations

0

0.5

1

1.5

2

2.5

3

3.5

4

129.compress 126.gcc 099.go 132.ijpeg 130.li 124.m88ksim 134.perl 147.vortex H_mean

IP
C

Real_IPC (Td_Opt) Real_IPC (Havanki’s heuristic) Real_IPC (Natural tree)

Static_IPC (Td_Opt) Static_IPC (Havanki’s heuristic) Static_IPC (Natural tree)

Figure 14. The ideal and realistic performance for different treegion formations

in [3]. Another fact that improves the I-cache
performance is that the tail duplication enables the
treegion scheduler to produce a denser schedule of the
operations (i.e., more operations in each multi-op). As a
result, the number of I-cache accesses is reduced and so
is the number of I-cache misses. Figure 13 shows the
ratio of I-cache misses of the optimal efficiency results to
the natural treegion results. It can be seen from Figure 12
and 13 that although the optimal efficiency results of the
benchmark gcc has a higher miss rate than natural
treegion results, it has smaller I-cache miss penalties due
to the reduced number of accesses. In average, the I-
cache miss penalties of optimal efficiency results have a
4% decrease comparing to the natural treegion results for
a 32KB I-cache.

The ratio of I-cache misses of Td_opt over
natual treegion

0%

50%

100%

150%

200%

250%

co
mpr

es
s

gc
c go

ijp
eg li

m88
ks

im pe
rl

vo
rte

x

av
er

ag
e

Figure 13. The ratio of I-cache misses of optimal
efficiency results over natural treegion results

Overall, in Figure 14, we show the performance with
realistic I-cache, D-cache, and branch prediction (the
parameters are in Table 1) and the ideal performance
assuming ideal cache and branch prediction (i.e., the
static IPC) for treegions formed using optimal code size
efficiency, Harvanki’s heuristic, and natural trees. From
Figure 14, it can be seen that the optimal efficiency
results show an average of 22% speedup based on static
IPC and 17% speedup based on dynamic IPC over

natural treegion results. In terms of the code size
increase, natural treegion results, Havanki’s results and
optimal efficiency results show an increase of –3%,
70%, and 2% over the original code size respectively.

5. Conclusion

This paper presents a code size efficiency study for
global scheduling for ILP processors. The main
contributions include:

• A quantitative measure of the code size
efficiency is proposed for any code size related
optimization. Based on the general idea of
expressing the code size efficiency as the ratio of
IPC changes over the code size changes, two
formal definitions are formulated, the average
code size efficiency and the instantaneous code
size efficiency, and they are used to measure the
average impact of code size related optimizations
and the effect of an individual application of an
optimization respectively.

• A heuristic based on performance bound is
proposed to estimate the execution time of a
multi-path region so that we can convert the static
IPC computation in code size efficiency into the
estimated execution time.

• We proposed an iterative approach to find
the best code size efficiency for a given code size
constraint. Using the tail duplication as an
exemplary code size related optimization, it is
shown that code size increase resulting from tail
duplication has a significant but varying impact
on IPC, e.g., the first 2% code size increase
results in 18.5% increase in IPC while the IPC
changes less than 1% when given code size
increase ranging from 20% to 30%.

• Based on the observations made above, we
define the term of optimal code size efficiency for
any program and a simple, yet robust threshold

scheme is derived to find this optimal solution.
Our experimental results verified that this scheme
finds the optimal code size efficiency accurately
and for SPEC95int benchmarks, it shows average
of 2% code size increase of scheduled code over
the original code and improved I-cache
performance (4%) for a medium size cache (32K)
comparing to the natural treegion scheduled
results. In terms of performance, the optimal
efficiency results show an average of 22% based
on static IPC and 17% speedup based on dynamic
IPC over natural treegion results. So, with a small
code size increase, significant ILP can be better
exploited during the global scheduling phase
while the I-cache performance is improved at the
same time.

The code size efficiency enables us to find the best
trade-off between static ILP exploitation and code size
increase. We can extend this approach for different code
size related optimizations. For example, we may use the
efficiency to decide whether to unroll a loop for a certain
times or to tail duplicate one candidate region.

6. Acknowledgments

This research was funded by Intel Corporation and
Sun Microsystems, Inc.

7. References

[1] W.A. Havanki, S. Banerjia, and T. M. Conte. “Treegion
scheduling for wide-issue processors.” Proceedings of the
4th International Symposium on High-Performance
Computer Architecture (HPCA-4), February 1998.

[2] H. Zhou, M. Jennings, and T. M. Conte. “Tree Traversal
Scheduling: A Global Scheduling Technique for
VLIW/EPIC Processors”. Proceedings of the 14th Annual
Workshop on Languages and Compilers for Parallel
Computing (LCPC’01), LNCS, Springer Verlag, August
2001.

[3] W. Y. Chen, P. P. Chang, T. M. Conte, and W. W. Hwu,
“The Effect of Code Expanding Optimizations on
Instruction Cache Design”, Technical Report CRHC-91-
17, University of Illinois, Urbana, May 1991

[4] M. Jennings, H. Zhou, and T. M. Conte. “A Treegion-
based Unified Approach to Speculation and Predication in
Global Instruction Scheduling”. Technical Report, ECE
Department, NC State University, August 2001.

[5] W.W. Hwu, S.A. Mahlke, W. Y. Chen, P. P. Chang, N. J.
Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank, T.
Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery.
“The Superblock: An effective way for VLIW and
superblock compilation.” The Journal of Supercomputing,
vol. 7, pp. 229-248, January 1993.

[6] V. Kathail, M. S. Schlansker, and B. R. Rau, “HPL-PD
architecture specification: version 1.1.” Tech. Rep. HPL-

93-80 (R.1), Hewlett--Packard Laboratories, February
2000.

[7] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R.
A. Bringmann “Effective compiler support for predicated
execution using the Hyperblock” Proc. 25th Ann. Int’l
Symp. Microarchitecture (MICRO25), December 1992.

[8] S. Aditya, V. Kathail, and B. R. Rau, “Elcor’s machine
description system: version 3.0.” Tech. Rep. HPL-98-128
(R.1), Hewlett--Packard Laboratories, October 1998.

[9] M. S. Schlansker and B. R. Rau. “EPIC: An architecture
for instruction-level parallel processors” Tech. Rep. HPL-
99-111, Hewlett--Packard Laboratories, February 2000.

[10] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Water, and
W. W. Hwu, “IMPACT: An architectural framework for
multiple-instruction-issue processors”, Proc. 18th Int’l
Symp. On Computer Architecture (ISCA18), 1991.

[11] The LEGO Compiler. Available for download at
http://www.tinker.ncsu.edu/LEGO.

[12] F. Mueller and D. B. Whalley, "Avoiding Conditional
Branches via Code Replication", ACM SIGPLAN
Conference on Programming Language Design and
Implementation, Jun 1995.

[13] D. Bernstein, D. Cohen, and H. Krawczyk, "Code
Duplication: An Assist for Global Instruction Scheduling",
Proc. 24th Ann. Int’l Symp. Microarchitecture
(MICRO24), 1991.

[14] Bill Mangione-Smith, “Performance Bounds for Rapid
Computer System Evaluation”, in Fast Simulation of
Computer Architectures, edited by Thomas M. Conte and
Charles E. Gimarc, Kluwer Academic Publishers, 1995.

[15] Intel Corp, IA-64 Application Developer’s Architecture
Guide, 2000.

[16] B. R. Rau, “Iterative Module Scheduling”, Tech. Rep.
HPL-94-115, Hewlett--Packard Laboratories, 1995.

[17] A. E. Eichenberger and W. M. Meleis, “Balance
Scheduling: Weighting Branch Tradeoffs in Superblocks”,
Proc. 32nd Ann. Int’l Symp. Microarchitecture
(MICRO32), 1999.

[18] Rainer Leupers, “Code Optimization Techniques for
Embedded Processors”, Kluwer Academic Publishers,
2000.

[19] T. M. Conte, S. Banerjia, S. Y. Larin, K. N. Menezes, and
S. W. Sathaye, “Instruction fetch mechanisms for VLIW
architectures with compressed encodings.” Proc. 29th Ann.
Int’l Symp. Microarchitecture (MICRO29), December,
1996

[20] J. Hoogerbrugge. “Dynamic branch prediction for a VLIW
processor.” Proc. Of the 2000 Conf. On Parallel
Architectures and Compilation Techniques (PACT’00),
October 1997.

[21] H. Zhou and T. Conte. “Code Size Efficiency in Global
Scheduling”. Technical Report, ECE Department, NC
State University, January 2002.

Code Compression by Register Operand Dependency

Kelvin Lin, Jean Jyh-Jiun Shann and Chung-Ping Chung

Department of Computer Science & Information Engineering

National Chiao Tung University

{kelvin, jjshann, cpchung}@csie.nctu.edu.tw

Abstract
This paper proposes a dictionary-based code

compression technique that maps the source register

operands to the nearest occurrence of a destination

register in the predecessor instructions. The key idea is

that most destination registers have a great possibility to

be used as source registers in the following instructions.

The dependent registers can be removed from the

dictionary if this information can be specified otherwise.

As a result, the compression ratio benefits from the

decreased dictionary size. A set of programs has been

compressed using this feature. The compression results

show that the average compression ratio is reduced to

38.6% on average for MediaBench benchmarks compiled

for MIPS R2000 processor.

1. Introduction

Most of the embedded systems are cost sensitive. Small

memory size results in a lower cost and lower power

requirement. Typically, programs in an embedded system

are stored in a ROM associated with an ASIC, whose sizes

translate directly into silicon area and cost. Thus, memory

size reduction becomes more important in the design of an

embedded system. In addition, as the complexity of an

embedded system grows, programming in assembly

language and optimization by hands are no longer

practical and economical. The programs are written in

high-level languages (HLL), such as C and C++, and

compiled into executables. Direct translation from

high-level languages into the machine code incurs the

penalty of code size due to completeness of translation for

each HLL statement to machine instructions. Some code

optimization, such as redundant code removal or common

sub-expression elimination must be extra processed [1].

Most compiler optimizations focus on the execution speed

rather than the code size, and this fact results in a

speed-space trade-off. Therefore, code size optimization

has great potential within the described a programming

environment.

This paper proposes a code compression technique that

further reduces code size. This method is based on the

operand factorization [2], but separates the instruction

sequence differently into the opcode sequence, the

mapping sequence, and the residual operand sequence.

The key idea of this method is that a source register has a

great possibility of congruence with the destination

register of the previous instruction. We use the mapping

tag to identify the relationships between source registers

and destination registers so that the occurrences of the

same registers can be eliminated from the operand

sequences used in the operand factorization method. We

found that the variations of the relations are much smaller

than that of the operands themselves. The dictionary

storing the mapping information occupies only a small

amount of space, and the size of the dictionary storing the

operands is greatly reduced. As a result, compression ratio

benefits from the decreased dictionary size. Experimental

results show that the compression ratio can be reduced to

38.6% on average for MediaBench [3] compiled for MIPS

R2000 processor.

This paper is organized as follows: Section 2 discusses

the related work in code compression; Section 3 proposes

the detailed register dependency method; Section 4

describes the decompression engine; Section 5 presents

the simulation results, and Section 6 is a summary.

2. Related Work

An intuitive way to achieve the reduction of codes is to

restrict the instruction size. This is the approach adopted

in the design of the Thumb [4] and MIPS16 [5]. Shorter

instructions are achieved primarily by restricting the

number of bits that encode opcodes, registers and

immediate values. The results are 30%~40% smaller

programs running 15%~20% slower than programs using

standard RISC instruction set.

Another way to reduce the code size is to use the

traditional compression method, which encodes the

occurrences of identical instructions (or instruction

sequences) in a program to the smaller codewords to

reduce the program size. Lefurgy et al. [6] propose a

dictionary-based compression method, which stores one

copy of the common instruction sequences into the

dictionary and replaces the occurrences of the sequences

with shorter (fixed or variable-length) codewords than the

instruction sequences themselves. Post-compilation

modifies all branch offsets to reflect the new compressed

address space. The average compression ratios of 61%,

66%, and 74% were reported for the PowerPC, ARM, and

i386 processors respectively. Wolfe el al. [7] propose a

statistical compression method in Compressed Code RISC

Processor (CCRP). Each 32-byte cache line is Huffman-

encoded [8] into smaller aligned bytes or words. Line

Address Table (LAT) generated by the compression tool is

used to map the original program instruction addresses

into compressed code instruction addresses. This table is

stored along with the program. The compression ratio of

73% on MIPS R2000 was reported.

To further improve the compression ratio, more

similarities between instructions must be explored to

reduce both the dictionary size and the program encoding.

Araujo et al. [2] find that most instruction sequences are

identical with either opcode sequences or operand

sequences, but not both. Therefore, they separate the

instruction sequences into tree-patterns (opcode sequences)

and operand patterns (operand sequences) and encode

each instruction sequence is encoded into TP (tree pattern

codeword) and OP (operand pattern codeword). This

method is called operand factorization. The average

compression ratio for this scheme is 43% using Huffman

encoding [8]. Another coding instruction steam method,

called tailored encoding [9], tries to minimize both the

encoding of opcodes and instruction sizes. This method

minimizes the number of bits to encode the opcodes and

registers exactly used in an application, and shortens the

instruction length by omitting the reserved field or

narrowing the storage of an immediate value. In the end,

the compact instructions are considered as basic unit to be

compressed into Huffman-codes. An average compression

ratio of 65% was reported.

Encoding the instruction stream utilizing register

dependency is found in early Horizon machine [10]. Each

64-bit instruction contains a lookahead field that is used to

control the instruction overlap. This field specifies the

number of instructions without register dependency. This

field generated by the compiler is used primarily to denote

the maximal number of instructions that can be issued

before a dependency is encountered to maximize the

instruction level parallelism. Register dependencies are

also utilized to minimize the memory traffic during

procedure calls [11]. This method proposes four

compiler optimizations guided from profile information to

eliminate the load/store of callee-saved register during the

procedure calls. An average of 2.5% speedup is

obtained.

3. Register Operand Dependency

The following subsections detail our compression

method. First of all, we identify the register operands in

the instructions. Observation shows that the instruction

sequences have dependencies between register operands,

so we find out the destination-source dependencies

between them. Finally, we compress the instruction

sequences into Huffman-codes. The following procedures

describe the compression algorithm using such a

technique.

3.1. Instruction Classification

This step examines the types of operands in the

Table 1. Instructions classification

Categories Example Instruction

1. op *nop

2. op src mthi $rn

3. op dst mfhi $rn

4. op imm j address

5. op src, src mult $rn, $rm

6. op src, imm bgez $rn, address

7. op dst, src *move $rn, $rm

8. op dst, imm lhi $rn, value

9. op src, src, imm sw $rn, offset($rm)

10. op dst, src, src add $rn, $rm, $rk

11. op dst, src, imm lw $rn, offset($rm)

instruction formats to find the register dependency. To

build the compression model, we examine the instruction

set of MIPS R2000 processor [12]. The instructions are

classified into the following categories shown in Table 1

according to the types of operands in the instructions. In

this table, op indicates the opcode of an instruction, src

(dst) indicates the operand is used as a source (destination)

register for operation op, and imm indicates the field is an

immediate. This classification is based on the register

types and the number of registers the opcode exactly used.

The instructions ‘nop’ and ‘move’ are pseudo instructions,

but not assembly instructions. The pseudo instruction

‘move $rn, $rm’ can be implemented (generated by GNU

GCC) by either instruction ‘addu $rn, $rm, $r0’ or ‘or $rn,

$rm, $r0’. The opcode ‘addu’ with some specified

operands, such as ‘$rn, $rm, $r0’, is encoded into a new

opcode. We believe that encoding such an opcode with a

restricted operand distinctly from the original opcode

reduces code size more than encoding of all combinations

of possible operands. There are two reasons: First, since

there are only a small number of distinct opcodes for

MIPS R2000, encoding opcode with restricted operand

into a new opcode increases fewer bits than the encoding

for all combinations of possible operands. Second, some

opcodes are likely to use specified operands. Encoding

such a case into a distinct opcode can shorten the operand

sequences. Shorter operand sequences are more likely to

be shared by multiple instruction sequences. This

classification is used to find the dependency relationships

between source and destination registers.

3.2. Register Operand Dependency

Observation reveals that instruction sequences may

have the same dependency relationship between registers

even if they are different instruction sequences. Consider

the following two instruction sequences and their opcode

sequences and operand sequences extracted according to

the instruction format in Figure 1. Both second

lui $r3, 0xfcb08
addu $r2, $r2, $r3
sw $r2, 0x1c($r5)

addi $r3, $r6, 0x0xffd0
and $r5, $r3, $r2
bnez $r5, 0xa002505c

$r3, 0xfcb08
$r2, $r3, $r2
$r5, $r2, 0x1c

$r3, $r6, 0x0xffd0
$r3, $r2, $r5
$r5, 0xa002505c

Operand
Sequence

Instruction Sequence

lui
addu
sw

addi
and
bnez

Opcode
Sequence

lui $r3 0xfcb08
spec $r2 $r3 $r2 addu
sw $r5 $r2 0x1c

addi $r3 $r6 0x0xffd0
spec $r3 $r2 $r5 and
bnez $r5 0xa002505c

 rs rt rd or imm

Instruction Format

(a)

(b)

(c)

Figure 1. Example opcode sequences and

operand sequences

instructions of these two sequences use the destination

registers of the previous instructions as their source

registers. A mapping tag is used to describe this

dependency. Each source register has a mapping tag. For

an n-bit mapping tag, we assign the value ‘0’ for load

operation indicating that the corresponding register must

be retrieved from the Residual Operands, and value ‘k’

ranging from 1 to 2n-1 for relation operation indicating

that the corresponding register can be obtained from the

destination register of the previous instructions. The

mapping distance, indicated by a non-zero value, counts

only the number of instructions with a destination register,

from the instruction writing to this source register of the

current instruction. The remaining unmapable registers

and the immediate values are placed behind as the residual

operands. We use a 2-bit mapping tag for example. Tag

value ‘0’ indicates the corresponding source register

comes from residual operands, and tag values ‘1’, ‘2’

and ’3’ indicate the corresponding source register is the

destination register of the previous first, second and third

in st ruct ion , r espect i vel y. Figure 2 shows the

representation of relationships and the residual operands.

lui dst imm
spec src src dst addu
sw srd src imm

addi src dst imm
spec src src dst and
bnez src imm

$r3, 0xfcb08
$r2, $r2
$r5, 0x1c

$r3, $r6, 0xa004
$r2, $r5
0xa002505c

Residual
Operands

Instruction Format

0, 1
0, 1

0
1, 0
1

Mapping
Tag

(a)

(b)

lui
addu
sw

addi
and
bnez

Opcode

Figure 2. Representations of operand

relationships and residual operands

The first instruction does not contain any source register,

so there is no need for any mapping tag. All the operands

are listed as the residual operands. In the second

instruction, the first source register ($r2) has not appeared

before, so the mapping tag is ‘0’ and this register is placed

behind as the residual operand. The second source register

($r3) is the same as the destination register of the first

instruction, and thus a tag value ‘1’ indicates that this

source register is the same as the destination register of

the instruction one position up. As a result, this register

can be omitted. The destination register is also placed

behind as the residual operands. The other instructions

proceed in like manner. It is surprising that these two

instruction sequences in the example have the same

mapping tag sequence although they are quite different

instructions. This method not only extracts the common

register relations, but also reduces the number of operands

in the operand sequence to increase the re-usage of the

residual operands. This step attempts to locate the register

dependencies for all instructions in the basic blocks. These

dependency relationships cannot cross the basic block

boundary since the registers are not guaranteed to be alive

across the basic block.

3.3. Register Majority

After removing the dependent source registers from

operand sequence, the residual operand sequences still

contain redundancies. There are some registers appearing

frequently in residual operand sequences. The most

frequent register among all residual operand sequences is

termed the first (register) majority, the second most

frequent register is termed the second majority, and so on.

An effective method to further reduce the dictionary size

is to remove these majorities. We borrowed values from

the mapping tag to denote the mapping of the unmappable

registers to these majorities. Assuming that there are m

majorities, for an n-bit mapping tag, the tag value ‘0’ is

reserved for load operation, the tag values from ‘1’ to ‘2n –

m – 1’ remain to the relation operation and tag values from

‘2n – m’ to ‘2n – 1’ indicate these m majorities. The

majorities are stored in dedicated registers, called

Majority Registers (MRs), so that the mapping tag can

reference these majorities. For example, assuming that the

register ‘$r5’ is the first and the only majority for a 2-bit

mapping tag, tag value ‘3’ is reserved for majority. The

instruction sequences in Figure 2 can be transformed into

Figure 3. This step replaces the tag value ‘0’ with value

‘3’ if the corresponding register is a majority, and removes

the majority registers from the residual operand

sequences.

$r3, 0xfcb08
$r2, $r2
0x1c

$r3, $r6, 0xa004
$r2
0xa002505c

Residual
Operands

0, 1
3, 1

0
1, 3
1

Mapping
Tag

$r3, 0xfcb08
$r2, $r2
$r5, 0x1c

$r3, $r6, 0xa004
$r2, $r5
0xa002505c

Residual
Operands

0, 1
0, 1

0
1, 0
1

Mapping
Tag

Figure 3. Mapping tag sequence after applying

the majorities

3.4. Program Encoding

After removing the registers with destination-source

and majority relationships from the operand sequences,

the program is divided into instruction sequences as the

basic unit for compression. An instruction sequence is

defined as a number of instructions with each instruction

(except the first one) having at least one source register to

be the same as the destination register of the predecessor

instructions. Every instruction sequence is partitioned into

three sequences: opcode sequence, mapping tag sequence

and residual operand sequence. These three sequences

are independently Huffman-coded into codewords CWOP,

CWMAP and CWOD. The entire program is transformed into

the form: [CWOP1, CWMAP1, CWOD1, CWOP2, CWMAP2,

CWOD2, …, CWOPi, CWMAPi, CWODi], assuming that the

program has a total of i instruction sequences. Codewords

are allowed to split at the end of bytes. Bits from the

spilled codeword are spilled into the next byte. The

compression ratio benefits from the use of splitting

codewords and Huffman encoding. But doing so also

cause the execution overhead. We trade-off the

performance in exchange for more compression ratio.

3.5. Branch Target Address

Since the codewords can be of any length and not

necessarily byte aligned, the branch target must be able to

point at any bit location within a byte. The branch offset is

divided into 2 fields: the byte address (23 bits or 13 bits)

and the bit offset (3 bits). The overall branch distance is

reduced to 1/32. Nevertheless, for the program analyzed,

only a small percentage of targets require more than 23 or

13 bits. For those branches, a jump table is provided for

storing the target addresses. Similar to [6], the jump table

addresses are patched up to reflect the compressed

addresses.

4. Decompression Engine

This section describes the decompression engine

designed for our compression method. The decompression

engine consists of three dictionaries and an Instruction

Assembly Buffer (IAB) as shown in Figure 4.

4.1. Dictionaries

Three dictionaries store the opcode sequences,

mapping tag sequences and residual operand sequences,

independently. The opcode sequences are stored in the

Opcode Dictionary (OPD). Each entry contains 3 fields:

C
W

O
P

C
W

M
A

P
C

W
O

D

D
ecoder

D
ecoder

D
ecoder

OPD

lui 0 0
addu 2 0
sw 2 1

0
1
3
1

$r3
$r6
$r2
$r2

2

4

8

 2n

Instruction
Assembly

Buffer
(IAB)

Imm Bus

lui $r3, 0xfcb08
addu $r2, $r2, $r3
sw $r2, 0x1c($r5)

Reg Bus (src1, src2, dst)

RGEN

MAPD

IMD

ROD

MRs MQ

Figure 4. Decompression engine

the opcode field, the mapping type field and the end mark.

The opcode field contains the opcode bits of an instruction

and the mapping type field contains two bits indicating

how many mapping tags must be read for this instruction.

The opcodes with different operand sequences will be

encoded into different OPD entries due to their different

mapping type fields. The end mark signals the end of an

instruction sequence.

The mapping tag sequences are stored in the Mapping

Dictionary (MAPD). We optimize the MAPD size by

sharing a shorter mapping tag sequence with a longer one

of which the prefix sub-sequence is the same as the

shorter one.

The Residual Operand Dictionary (ROD) storing the

residual operand sequences consists of two storages, the

Register Generation (RGEN) and IMmediate value

Dictionary (IMD). As the method proposed by Araujo

[2], the RGEN stores the registers only and the IMD stores

the immediate values in the residual operand sequences.

Residual operand sequence with immediate values can be

used to minimize the RGEN. For example, the residual

operand sequences ‘$r4, $r5, 0x4’ and ‘$r4, $r5, $r2’ can

share the same register sequence ‘$r4, $r5, $r2’. The last

register is also sent to the IAB from Register Bus

(RegBus), but ignored by IAB according to the opcode

from OPD. By rearranging the ROD to RGEN and the

IMD, the residual operand sequences of the two

instruction sequences in Figure 3 can share the same entry

in RGEN. On the other hand, IMD stores each distinct

immediate value in the program, regardless of which

residual operand sequence contains it. These values are

clustered into memory banks according to the number of

bits consumed. Accessing IMD and RGEN can be

processed in parallel to accelerate the decompression.

4.2. Instruction Assembly Buffer

The CWOP, CWMAP and CWOD are extracted from the

compressed program to index to instruction opcodes,

mapping tags and residual operands, respectively. The

retrieved opcodes, mapping tags and residual operands are

sent to the instruction assembly buffer (IAB) to assemble

to the original instruction sequences. Every time an

instruction is assembled, the destination register (if any) is

pushed into the mapping queue (MQ), so that the mapping

tag can reference them when relation operation is

specified. The size of the MQ is equal to the maximal

mapping distance defined previously.

4.3. Discussion on Decompression Overhead

The major concern for register operand dependency

method is the decompression efficiency. The

decompression speed depends on three periods of time:

(a) Determining the lengths of three codewords (CWOP,

CWMAP and CWOD).

(b) Decoding of each codewords, and

(c) Assembling the instruction sequence.

Speeding the determination of the lengths of codewords

and decoding of the codewords, which also happens to the

operand factorization method, can be solved by parallel

Huffman decoder [13]. The critical path for assembling an

instruction sequence differs from one sequence to another.

The mapping tags are read sequentially depending on the

mapping types in OPD entry. The more mapping tags to

be read, the slower the decompression speed. Furthermore,

after assembling an instruction, the destination register

must be pushed into MQ, which is also manipulated

serially. These two steps are the main penalty for

exchange of a better compression ratio.

5. Experimental Results

This section describes the experimental results of code

compression by register dependency. We use the

MediaBench [3] for analyzing this technique. The

programs are compiled for MIPS R2000 using GCC

version 2.8.1 with optimization –O2. Initially, we examine

the suitable size of mapping tag to find the best

compression ratio, and then compare the compression

ratios between this method and the operand factorization

method. The following subsections explain the

compression effects using the cjpeg for example.

5.1. Size of Mapping Tag

It is critical to determine what size of mapping tag is

sufficient for compacting the both dictionaries and the

program encoding. Simulation is used to find the suitable

tag size. The simulated tag sizes range from 1 to 5 bits

(since the encoding of register in the original program is 5

bits), and the number of majorities ranges from 0 to 2tag

size – 1. The tag value ‘0’ is always for load operation, tag

value ‘1’ to ‘k’ (k = 2tag size – # majorities – 1) indicates the

relation operation and tag value ‘k+1’ to ‘2tag size – 1’ is for

the majority operation.

5.2. RGEN Size Reduction

RGEN Size

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Majorities

R
at

io

Od Fact

1 bit

2 bits

3 bits

4 bits

5 bits

Figure 5. RGEN Size vs. mapping tag size

Figure 5 shows the dictionary size reduction versus the

size of mapping tag for RGEN. The x-axis is the number

of majorities and the y-axis is the RGEN size ratio to the

original program size. The first data set consists of one

point showing the size ratio of RGEN resulting from the

operand factorization method. The second data set is a

line-graph consisting of two points showing 1-bit mapping

tag with zero and one majorities. The third data set is also

a line-graph consisting of four points showing a 2-bit

mapping tag with zero, one, two and three majorities,

respectively. From the second data set (n = 1 case), we see

that size reduction due to dependency is more than due to

the removal of majorities. Furthermore, the last point of

each curve always tilts up. This is because the number of

registers removed from residual operands by mapping

distance 1 is sufficiently larger than the number of (2n–1)th

majority. From this figure, a 5-bit mapping tag with 30

majorities reduces the RGEN size by the largest degree.

5.3. Mapping Penalty

MAPD

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Majorities

R
at

io

1 bit

2 bits

3 bits

4 bits

5 bits

Figure 6. MAPD size vs. mapping tag size

RGEN + MAPD Size

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Majorities

R
at

io

Od Fact

1 bit

2 bits

3 bits

4 bits

5 bits

Figure 7. Size of RGEN plus MAPD vs. mapping

tag size

Although the size of RGEN is reduced, we introduced

the MAPD. Figure 6 shows the MAPD size compared to

the original program. The x-axis is the number of

majorities and the y-axis is the MAPD size ratio.

Fortunately, the size of MAPD is much smaller than the

size reduced in RGEN. The overall effect is still positive

for compression. Figure 7 shows the size of MAPD plus

RGEN. The overall dictionary size reduction is 5.41% on

average by using register dependency compression

method.

5.4. Final Compression Ratio

Final Comp Ratio

0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

0.5
0.51
0.52

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Majorities

R
at

io

Od Fact

1 bit

2 bits

3 bits

4 bits

5 bits

Figure 8. Final compression ratio vs. mapping tag

size

������� ������� ������� �������

������
������

�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������

�������
�������

�������
�������
�������

�������
�������

�������
�������
�������

Final Comp Ratio

0

0.1

0.2

0.3

0.4

0.5

Od Fact 1 bit 2 bits 3 bits 4 bits 5 bits

Mapping Tag Size

R
at

io

���
CWmap

CWod���
CWop

���
MAPD

IMD

RGEN

OPD

Figure 9. Size contributions for all components in

a compressed program

Figure 8 shows the final compression ratios versus the

size of mapping tag. As we expected, a 5-bit mapping tag

with 30 majorities results in the best compression ratio.

Figure 9 shows size contributions of the components in

the compression ratio. The x-axis shows the mapping tag

size and the y-axis shows the best compression ratios of

the specified mapping tag sizes. This figure shows that

three large portions in a compressed program are CWOP,

CWMAP and CWOD. Table 2 shows size reductions when

the components are classified into two major parts:

dictionary part and program encoding part. Dictionary part

indicates the total size of OPD, MAPD, RGEN and

Table 2. Size reduction of dictionary and program

encoding

Tag Size

Dictionary
Size(%)

Compressed
Code

Size(%)

Dictionary
Size

Reduction(%)

Program
Encoding

Reduction(%)
Operand

Factorization
12.91 35.69 N/A N/A

1-bit 10.96 39.45 2.00 -3.80

2-bits 9.66 40.67 3.20 -5.00

3-bit 7.94 41.21 5.02 -5.50

4-bits 6.89 41.04 6.00 -5.40

5-bits 5.76 36.4 7.20 -0.70

IMD. The program encoding consists of CWOP, CWMAP

and CWOD of all instruction sequences. From Table 2, the

maximal factor in reducing the compression ratio is due to

the reduction of dictionary size rather than encoded

program size.

Figure 10 shows the final compression ratios for all

benchmark programs. Each benchmark consists of 2 bars,

one for operand factorization (Od Fact) method and the

other for our register operand dependency (Reg Dep)

method. The OPD, IMD and CWOP are the invariants in

these two methods. The average decrement of the RGEN

is 6.6% and the increment of MAPD is 1.2%. This is the

main advantage of register dependency method. The

average decrement of CWOD is 8.3%, but the increment of

CWMAP is 10.2%. Total detail statistics are given in Table

3.

������� ������� ������� ������� ������� ������� ������� ������� ������� ������� ������� �������
����
�������

���
�������

����
�������

���
�������

����
�������

���
�������

����
�������

���
������� ������� ������� �������

����
�������

����
����
����
����

���
���
���

���
���
�������
����

����
����
����
����

���
���
���

���
���
�������
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���
����
����
����

����
�������

���

����
�������

���

���
���
���
����
����

����
����
�������

���

Final Comp Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

O
d

R
eg O
d

R
eg O
d

R
eg O
d

R
eg O
d

R
eg O
d

R
eg O
d

R
eg O
d

R
eg O
d

R
eg O
d

R
eg O
d

R
eg O
d

R
eg

cjpegdecodedjpegencodempeg2decodempeg2encodepegwit rastarawcaudiorawdaudiounepicavg

Benchmark

R
at

io

CWmap���
Cwod

CWop

MAPD

IMD���
���RGEN���

OPD

Figure 10. Final compression ratio for all

benchmarks

Table 3. Final compression ratios

Bench

mark
Method

OPD

(%)

IMD

(%)

RGEN

(%)

MAPD

(%)

CWOP

(%)

CWOD

(%)

CWMAP

(%)

Final

(%)

Od Fact 1.00 0.33 11.58 12.55 23.14 48.60
cjpeg

RegDep 1.00 0.33 2.88 1.54 12.55 10.99 12.86 42.15

Od Fact 1.06 0.16 8.77 11.19 17.96 39.14
decode

RegDep 1.06 0.16 2.71 1.06 11.19 10.88 8.96 36.02

Od Fact 1.07 0.26 12.25 12.52 23.44 49.54
djpeg

RegDep 1.07 0.26 2.85 1.78 12.52 10.89 13.03 42.40

Od Fact 1.05 0.17 8.75 11.19 17.96 39.12
encode

RegDep 1.05 0.17 2.70 1.05 11.19 10.87 8.96 35.99

Od Fact 1.05 0.53 10.21 12.26 20.82 44.87 mpeg2

decode RegDep 1.05 0.53 3.24 1.32 12.26 12.47 10.73 41.60

Od Fact 0.89 0.66 9.78 12.53 21.73 45.59 mpeg2

encode RegDep 0.89 0.66 3.18 1.18 12.53 13.09 11.15 42.68

Od Fact 0.83 0.14 9.32 11.92 20.28 42.49
pegwit

RegDep 0.83 0.14 2.84 1.44 11.92 12.09 10.86 40.12

Od Fact 0.71 0.72 9.02 12.13 20.41 42.99
rasta

RegDep 0.71 0.72 2.96 1.02 12.13 12.53 10.32 40.39

Od Fact 0.91 0.14 8.20 10.78 17.19 37.22 rawcau

dio RegDep 0.91 0.14 2.51 0.98 10.78 10.50 8.34 34.16

Od Fact 0.91 0.14 8.19 10.77 17.18 37.19 rawda

udio RegDep 0.91 0.14 2.51 0.98 10.77 10.50 8.34 34.15

Od Fact 0.68 0.31 6.74 11.34 17.02 36.09
unepic

RegDep 0.68 0.31 2.20 0.7 11.34 11.29 8.47 34.99

Od Fact 0.92 0.32 9.38 11.74 19.75 42.12
Agv

RegDep 0.92 0.32 2.78 1.19 11.74 11.46 10.18 38.60

6. Conclusion

In this paper, we propose the register dependency

compression method to compress embedded system

programs for a RISC processor. The key idea of this

method is to remove the dependent register from the

operand sequences to reduce the dictionary size and

program encoding. The best compression ratio of this

method results in 34.15% and an average of 38.60%.

This research can be further improved in several ways.

First, the codewords for both opcode sequences and

mapping tag sequences are the largest portions

contributing to the compression ratio. Reducing mapping

tag size and reusing the OPD entries are next step goals

for improving the compression ratio. Second, the compiler

could attempt to produce identical instruction sequences

for the same expression tree [1] so that the more common

instruction sequences become more compressible [14].

One way to accomplish this is to allocate the same

registers for the same expression tree. Finally, we can

improve the algorithm to find more relationships between

operands. Such implementation may include building both

the language grammar and register allocation rules, and

compressing the instruction sequences to the

representations of these rules.

7. References:

[1] A. Aho, R. Sethi, and J. Ullman, Compilers, Principles,

Techniques and Tools, Addison Wesley, Boston, 1988.

[2] G. Araujo, P. Centoducatte, M. Cortes, and R. Pannain,

“Code Compression Based on Operand Factorization,” 31st

Annual ACM/IEEE International Symposium on

Microarchitecture, 1998.

[3] C. Lee, M. Potkonjak, and W. H. M. Smith, “MediaBench:

A Tool for Evaluating and Synthesizing Multimedia and

Communications Systems,” 30th Annual ACM/IEEE

International Symposium on Microarchitecture, 1997.

[4] J. L. Turley, “Thumb Squeezes ARM Code Size,”

Microprocessor Report, 9(4), 27 March 1995.

[5] K. Kissell, MIPS16: High-density MIPS for the Embedded

Market, Silicon Graphics MIPS Group, 1997.

[6] C. Lefurgy, P. Bird, I. C. Chen, and T. Mudge, “Improving

Code Density Using Compression Techniques,”

Proceedings of the 30th Annual International Symposium on

Microarchitecture, December 1997.

[7] A. Wolfe and A. Chanin, “Executing Compressed Programs

on an Embedded RISC Architecture,” Proceedings of the

25th Annual International Symposium on Microarchitecture,

December 1992.

[8] D. A. Huffman, “A Method for the Construction of

Minimum Redundancy Codes,” Proceedings of the IEEE,

vol. 40, 1952, pp. 1089 – 1101.

[9] S. Y. Larin and T. M. Conte, “Compiler-driven cached code

compression schemes for embedded ILP processors,”

Proceedings of the 32nd Annual International Symposium

on Microarchitecture, Nov., 1999.

[10] J. T. Kuehn and B. J. Smith, “The horizon supercomputing

system: architecture and software”, Proceeding of

Supercomputing '88, Nov. 1988., p.p. 28 – 34.

[11] H. Gad, K. Moshe, M. Bilha and E. Vadim, “Light Weight

Optimization for Reducing Hot Saves and Restores of

Callee-Saved Registers", 4th workshop on Feedback-

Directed and Dynamic Optimization (FDDO-4), Austin,

Texas, Dec. 1, 2001.

[12] Kane, Gerry, MIPS RISC architecture, Prentice Hall, 1988.

[13] Rudberg, M.K.; Wanhammar, L., “High speed pipelined

parallel Huffman decoding,” Proceedings of 1997 IEEE

International Symposium on Circuits and Systems, vol. 3,

1997, p.p. 2080 - 2083.

[14] Saumya Debray, William Evans, and Robert Muth,

“Compiler techniques for code compression,” Workshop on

Compiler Support for System Software, May 1999.

Code Cache Management Schemes for Dynamic Optimizers

Kim Hazelwood Michael D. Smith
Division of Engineering and Applied Sciences

Harvard University
{hazelwood, smith}@eecs.harvard.edu

Abstract

A dynamic optimizer is a software-based system that
performs code modifications at runtime, and several
such systems have been proposed over the past several
years. These systems typically perform optimization on
the level of an instruction trace, and most use caching
mechanisms to store recently optimized portions of code.
Since the dynamic optimizers produce variable-length
code traces that are modified copies of portions of the
original executable, a code cache management scheme
must deal with the difficult problem of caching objects
that vary in size and cannot be subdivided without
adding extra jump instructions. Because of these
constraints, many dynamic optimizers have chosen
unsophisticated schemes, such as flushing the entire
cache when it becomes full. Flushing minimizes the
overhead of cache management but tends to discard
many useful traces. This paper evaluates several
alternative cache management schemes that identify and
remove only enough traces to make room for a new
trace. We find that by treating the code cache as a
circular buffer, we can reduce the code cache miss rate
by half of that achieved by flushing. Furthermore, this
approach adds very little bookkeeping overhead and
avoids the problems associated with code cache
fragmentation. These characteristics are extremely
important in a dynamic system since more complex
strategies will do more harm than good if the overhead is
too high.

1. Introduction

Dynamic optimization encompasses the idea of
applying code optimizations to existing program binaries
at runtime. The benefits range from leveraging runtime
information to supporting technology for commercial
approaches, such as Java. A dynamic optimizer works by
observing runtime user behavior and runtime constants,
then using that data as a guide for performing
optimizations on frequently-executed segments of code.
These optimizations may include code re-layout,

function inlining, and constant/copy propagation, among
others. Following optimization, the new code segment is
stored in a code cache. Execution of the optimized code
segments occurs directly fro m the code cache for the
remainder of the current program execution (or until the
code segment is flushed from the code cache). Due to the
increased instruction locality and code specialization,
speedups are often achieved. In fact, recent
implementations of dynamic optimization systems have
achieved speedup values averaging 7% over +02
optimized code [2]. The major tradeoff of dynamic
optimization is that, unlike static optimization passes, the
time required to observe runtime behavior, perform
optimizations, and update program code directly impacts
runtime performance. It is very important to keep the
overhead to a minimum, or we may lose the benefits of
dynamic optimization altogether.

One method for reducing the overhead of dynamic
optimization is to make smarter choices regarding code
cache management. Because it is not feasible to maintain
all optimized code traces produced during an execution
in a single code cache, a cache management scheme
must be employed. The management scheme should
have low overhead and should exploit temporal locality
by attempting to keep useful, active code in the dynamic
optimizer’s code cache. If the same portions of code are
repeatedly flushed and regenerated in the cache, then we
clearly need to take a different approach when deciding
which portions of code are stale and should be flushed.
Yet, complex cache management strategies may do more
harm than good if the overhead of the scheme is too
high. A middle ground that balances the benefits of
smarter management choices with the complexity of a
management algorithm should be thoroughly
investigated.

Several dynamic optimization systems exist that could
benefit from smarter cache management, among them
are Dynamo [2], Mojo [5], and Wiggins-Redstone [6].
Each system works by (1) performing runtime profiling
to determine hot traces (frequently executed portions of
contiguous code), (2) copying the hot traces into a
software-based cache mechanism (possibly performing
optimizations on the traces en route), and (3) executing

future instances of the hot traces directly from the code
cache.

This paper explores cache management strategies as
they apply to variably-sized elements and analyzes five
alternatives to the currently implemented full cache flush
scheme. While the results of this paper were produced
with a dynamic optimizer in mind, this work could be
equally applicable to dynamic translators and hardware-
based code caching mechanisms. The remainder of the
paper is organized as follows. Section 2 discusses our
experimental methodologies, defines terminology, and
presents background data that is used as the foundation
of our research. Section 3 discusses the issue of
fragmentation that arises when we deal with elements of
various sizes. Section 4 discusses several proposed cache
management strategies , which are evaluated in terms of
resulting miss rate, overhead, and fragmentation in
Section 5. Finally, Section 5.2 presents related work and
Section 7 concludes.

2. Methodology

Throughout the paper, we use the term traces. A trace
is a superblock region [9] that is typically used as a basis

for optimization (see Figure 1). Traces contain a single
entry point and multiple exit points. Internal loops and
side entries are not allowed, however a trace may span
procedural boundaries. Inside the code cache, a trace is
laid out as shown in the right half of Figure 1. Code is
often duplicated and specialized within the code cache.
For example, a second code trace may include the
function call starting with block E in Figure 1, but the
procedure may be specialized by choosing the E-F-H
path instead of the E-G-H path shown in the figure.

To provide a feel for the size of a typical code trace,
Table 1 shows the average size of a code trace produced
by the Dynamo system running on x86 (as discussed in
Section 2.1). Across the SPECint2000 benchmarks using
reference inputs, the average trace size is 106 bytes. Yet,
as we can see from Figure 2 and the standard deviation
column of Table 1, the sizes of individual traces vary
greatly during execution of a single benchmark. Table 2
then shows us the number of distinct traces that are
produced throughout a single execution of each
benchmark. On average, we may experience anywhere
from 1,200 to nearly 45,000 traces per execution. Based
on the average trace size (from Table 1), Table 3 then
shows us that while we can typically fit around 10,000
traces in a 1 MB code cache, we can only fit 625 in a 64
KB cache. This clarifies our point that even for larger
code caches, all traces cannot reside in the code cache
throughout program execution and emphasizes the need
for smart code cache management.

2.1. Our Execution Environment
All results used in this paper were generated using a

research version of HP Labs’ Dynamo 2.0 dynamic
optimizer on an Intel Pentium-II based machine running
RedHat Linux 6.2. The Dynamo 2.0 research tool was
described by Bruening et al [4] and Smith [11]. Targeted
for x86 architectures running Linux or Win32, Dynamo
2.0 differs from that as described by Bala et al [2]. It is
now a research tool equipped with several application
programming interface (API) hooks to allow information

A

B C

D

A
B
D
E
G
H
I

E

GF

HI
Return

A

B C

D

A
B
D
E
G
H
I

E

GF

HI

Call

A

B C

D

A
B
D
E
G
H
I

E

GF

HI
Return

A

B C

D

A
B
D
E
G
H
I

E

GF

HI

Call

Figure 1 - Example of a code trace

 avg min max stadev
gzip 97 41 1742 88.27
vpr 102 41 2223 122.23
gcc 96 41 4450 97.09
mcf 96 41 3310 194.75

crafty 121 41 3431 129.60
parser 105 41 1931 92.16

eon 126 41 4810 307.49
perlbmk 90 41 4253 103.80

gap 101 41 4044 105.36
vortex 115 41 4978 138.95
bzip2 99 41 2085 105.24
twolf 126 41 2628 196.33

average 106 41 3324 140.11

Table 1 – Size (in bytes) of code traces
produced by Dynamo.

0

50

100

150

200

250

300

350

400

41 51 61 71 81 91 101 111 121 131

Trace Size (bytes)

F
re

q
u

en
cy

Figure 2 - Distribution of trace sizes for 186.crafty.

regarding the progress of dynamic optimization to be
relayed to the user, while the source code and internals
remain a black box. The industrial version of Dynamo
tracked its own progress and provided an automatic
bailout mechanism when it recognized that native
execution would be better; however, the research version
does not provide this functionality.

We used all twelve SPEC2000 integer programs to
generate results. The official test, training, and reference
inputs were run to completion under the control of
Dynamo using the SPEC2000 runspec script. We set
environment variables indicating that Dynamo was to
dump a trace of all code cache accesses, insertions, and
evictions. We then sent this trace through a simulator
that implemented the various code cache replacement
schemes and analyzed the results.

3. Code Cache Fragmentation

An important issue that must be considered when
designing a dynamic optimization cache management
scheme is the problem of code cache fragmentation. Just
as our hard disk becomes fragmented over time when we

create and delete variably-sized
files, the cache of the dynamic
optimizer may also become
fragmented. But because trace
generation and replacement occur
so frequently in a dynamic
optimizer, the problem cannot be
ignored.

Figure 3 shows an example of a
fragmented cache. The darker
areas indicate free space. Consider
the case where a fragment of size
1 KB must be inserted into the
cache. While the sum of the free
space in the cache may add up to 1

KB, a contiguous segment of size 1 KB is not available.
In this case, we can either employ an expensive
defragment operation or simply lose any fragmented free
space that is too small to store a code trace.
Fragmentation is a serious issue; most known techniques
for defragmentation are much too expensive to be
implemented in a runtime system. Yet the need for
contiguous free space in a code cache necessitates either
a low-overhead runtime defragmentation solution, or a
management scheme that avoids fragmentation with the
code cache altogether.

4. Cache Management Strategies

The problem of cache management in a dynamic
optimization system is much more complicated than the
standard tasks of instruction and data cache management
in modern microprocessors. Unlike hardware caching
mechanisms, which focus on replicating data to a
location closer to the CPU, dynamic optimizers use
caching to create a space in memory where they have the
freedom to modify the contents and layout of a dynamic
sequence of code. Furthermore, while data and
instructions can be cached in fixed-sized blocks,
requiring the same partitioning for code traces would
negatively interact with the performance optimizations
and essentially jeopardize the performance benefits of
the optimized segment.

For these reasons, many dynamic optimization
systems were designed to perform aggressive,
unsophisticated code cache management. The original
Dynamo system [2] is one example. As the code cache of
the Dynamo system reaches full capacity, the entire
cache is flushed in order to make room for new
optimized fragments. While attempts are made to
recognize changes in an application’s working set and
preemptively flush the code cache, this is not always
possible before the cache fills. Overall, the main

gzip 1542
vpr 5055
gcc 44220
mcf 1272

crafty 7153
parser 7856

eon 6238
perlbmk 15959

gap 9827
vortex 13114
bzip2 1624
twolf 6572

average 10036
Table 2 – Distinct number of code traces

produced during execution. If we omit gcc as
an outlier, the average drops to 6928.

 1 MB 512 KB 256 KB 128 KB 64 KB
gzip 10810 5405 2703 1351 676
vpr 10280 5140 2570 1285 643
gcc 10923 5461 2731 1365 683
mcf 10923 5461 2731 1365 683

crafty 8666 4333 2166 1083 542
parser 9986 4993 2497 1248 624

eon 8322 4161 2081 1040 520
perlbmk 11651 5825 2913 1456 728

gap 10382 5191 2595 1298 649
vortex 9118 4559 2280 1140 570
bzip2 10592 5296 2648 1324 662
twolf 8322 4161 2081 1040 520

average 9998 4999 2499 1250 625

Table 3 - Number of traces in a typical code cache for each
benchmark and cache size.

Figure 3 - A

Fragmented Code
Cache

motivation for flushing is to capture phase changes
within a program and leverage these changes for simple
cache management.

We can envision several other design motivations
behind a code cache management scheme. In particular,
the manager can leverage temporal locality of program
code, the overall frequency count of program code, or
even the size of a code trace when deciding which trace
to evict from the code cache. While we expect schemes
that focus on temporal locality to perform best, we must
also take into account overhead of the schemes, as it
could potentially negate the benefits of smarter cache
management. In the following subsection, we discuss the
current full cache flush scheme, along with five
alternative cache management strategies that are based
on one of these three motivating factors.

4.1. Full Cache Flush
One cache management scheme that is currently

employed is the full code cache flush mechanism. Traces
begin filling the cache at its lowest address and continue

filling toward higher addresses. As soon as a trace is
encountered that cannot be inserted into the cache, all
traces are flushed, and the current trace becomes the first
element inserted into the empty code cache. While this is
a very low-overhead cache management strategy, it has
the adverse side effect of flushing hot traces from the
cache. If these hot traces are subsequently rebuilt and
reinserted into the cache, unnecessary overhead is
encountered. Table 4 shows the number of full cache
flushes that occur during execution of each of the Spec
benchmarks under the control of Dynamo. Table 4 shows
us that as the code cache size decreases linearly, the
number of cache flushes increases exponentially. For
embedded or other memory-restricted systems, this large
number of code cache flushes will certainly limit the
performance benefits attainable by the dynamic
optimizer. Yet, even standard systems cannot be
expected to keep pace with trends in software code sizes.
Furthermore, Table 5 shows us that 61.5% of the flushed
traces are regenerated in the cache, clarifying our point
that useful traces are often flushed from the cache and

 1 MB 512 KB 256 KB 128 KB 64 KB
164.gzip 5 5 5 5 48
175.vpr 2 2 5 10 139
176.gcc 169 1415 4613 18951 222522
181.mcf 1 1 1 1 3

186.crafty 1 17 2266 10200 154493
197.parser 1 167 3024 6525 18456

252.eon 3 6 936 5277 12952
253.perlbmk 16 197 2283 15656 73125

254.gap 1 4 19 692 9735
255.vortex 6 254 3509 28810 116378
256.bzip2 3 3 3 6 17
300.twolf 1 2 5 104 3879

Table 4 - Number of code cache flushes that occur during execution of
the ref input set of SPECint2000 for varying code cache sizes. Because a
cache flush always occurs during program exit, the possible number of

flushes that could be reported never falls below one.

gzip 84.6%
vpr 38.7%
gcc 42.9%
mcf 29.9%

crafty 58.8%
parser 80.5%

eon 61.5%
perlbmk 63.3%

gap 64.5%
vortex 65.6%
bzip2 81.3%
twolf 66.1%

average 61.5%
Table 5 – Percentage of flushed traces
that are later regenerated in the cache,

averaged over the five cache sizes.

1.68

1 . 8 6

1.47

1.83

1.75

1 . 4 4

2.27

1.41

1 . 6 1

1.71

1.59

1.93

1 . 7 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n

pe
rlbm

k ga
p

vo
rte

x
bzi

p2 tw
olf

av
era

ge

Figure 4 - Average number of trace evictions under LRA
before a new element can be inserted.

1.60
1 . 6 7

1.35

1.58

1.48

1 . 2 8

1.78

1.36

1 . 4 8

1.23

1.51

1.38

1 . 4 7

1

1.2

1.4

1.6

1.8

2

2.2

2.4

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n

pe
rlbm

k ga
p

vo
rte

x
bzi

p2 tw
olf

av
era

ge

Figure 5 - Average number of trace evictions under LFA
before a new element can be inserted.

unnecessary overhead is encountered to regenerate those
traces.

4.2. Least-Recently Accessed
An alternative cache management strategy is the

Least-Recently Accessed (LRA) strategy. LRA attempts
to recognize phase changes in the code by removing
traces that have not been accessed recently. For this
scheme, we again insert traces into the cache in the order
that they are created. However, when the code cache
becomes full, the trace that has not been accessed in the
greatest amount of time becomes the first candidate for
eviction. In the event that this trace will not free enough
space to hold the newly optimized trace, the subsequent
trace(s) in the code cache are also evicted (since we need
to free enough contiguous space for the new trace). This
scheme has the benefit of leveraging temporal locality,
yet it has the unfortunate side-effect of removing
innocent victim traces from the cache in order to create
adequate contiguous space. Figure 4 gives an indication
of the average number of evictions that typically occur in
order to make room for the insertion of a single trace.
From this figure, we see that it is usually necessary to
evict one to two traces from the cache for each new trace
that is inserted (or 70% of the time, an eviction will
result in the eviction of one additional victim trace.) A
second side-effect of this scheme is that it will create
code cache fragmentation.

4.3. Least-Frequently Accessed
By maintaining a counter indicating the number of

accesses to each optimized trace in the code cache, we
can determine the Least-Frequently Accessed (LFA)
element. As under LRA, we evict the LFA trace and any
subsequent traces necessary to make enough room for
the replacement trace. Yet, also like the LRA scheme,
LFA will suffer from the effects of code cache
fragmentation. Figure 5 shows that 47% of evictions
result in a victim trace eviction, thus victims are evicted
at a lower rate than LRA. Finally, while this scheme will
effectively recognize hot traces and allow them to remain

in the code cache, it may have the adverse effect of
removing new traces from the cache, which haven’t yet
acquired a high frequency count.

4.4. Least-Recently Created
One of the simplest temporal locality code cache

management strategies is a model that treats the code
cache as if it were a circular buffer. Called the Least-
Recently Created (LRC) method, traces in the code cache
are replaced in the same order as they were inserted. In
the case where the next candidate for replacement will
not free enough space in the code cache for the new
trace, subsequent traces are also removed. Though the
average number of fragments removed is larger than
LRU and LFU, the victim traces removed in this scheme
were already next in line for eviction. In the case where
an evicted trace frees much more space than is needed
for the newly optimized trace, the free space will be used
by the next trace inserted into the code cache, thus
avoiding fragmentation. In terms of bookkeeping
overhead, we merely update a pointer after each trace
insertion. And, by proactively removing additional LRC
traces from the code cache, a limited amount of
additional cache management overhead can be
eliminated in the future. Without prior knowledge of the
size of the replacement element, the previous schemes,
LRA and LFU, could not effectively remove elements in
a proactive manner.

4.5. Largest Element
The next two schemes we explored place priority on

the size of the element we were attempting to insert into
the code cache. The first of these schemes works by
evicting the largest trace in the code cache. Called the
Largest Element (LE) strategy, it works to minimize the
number of evictions that must occur within the code
cache, but with no interest placed on temporal locality.
Again, subsequent victim traces are removed when the
largest element does not produce enough free space for
the new trace. Figure 7 (when compared with Figure 4
through Figure 6) shows that the average number of

1.75

1 . 9 7

1.54

2.07

1.35

1 . 7 5

2.21

1.49

1 . 7 3
1.66

1.62

2.25

1 . 7 8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n

pe
rlbm

k ga
p

vo
rte

x
bzi

p2 tw
olf

av
era

ge

Figure 6 - Average number of fragments removed per
insertion using the LRC removal scheme.

1.26

1 . 4 2

1.33

1.06

1.39

1 . 0 9

1.31
1.27

1 . 2 0

1.04
1.11 1.10

1 . 2 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

gz
ip vp

r
gc

c
mcf

cra
fty

pa
rse

r
eo

n

pe
rlbm

k ga
p

vo
rte

x
bzi

p2 tw
olf

av
era

ge

Figure 7 - Average number of fragments removed per
insertion using the LE removal scheme.

evictions per insertion that is necessary using the LE
replacement scheme is much lower than the other
schemes (dropping from as high as 1.78 down to 1.21).
Yet this scheme will suffer from fragmentation, and the
bookkeeping overhead includes maintaining a sorted list
of the sizes of each trace in the code cache.

4.6. Best-Fit Element
The final strategy we explored was one that attempts

to minimize fragmentation by searching the code cache
for the best-fit trace to evict. In the Best-Fit Element
(BFE) scheme, the code cache is scanned in search of the
smallest element that is greater than or equal to the size
of the newly optimized trace. When the best-fit trace is
found, it is evicted from the cache, ideally leaving just
enough room for the new trace. In the case where all
traces in the cache are smaller than the new trace, traces
are then grouped in subsequent pairs of two, and the
best-fit search continues. Figure 8 shows that in 5 out of
6 instances, only one best-fit trace must be evicted from
the cache to make room for an incoming trace. In fact, as
Figure 9 indicates, we can usually find an eviction
candidate that is within one byte of the best-fit size. But
this scheme will have the highest overhead of all
schemes we have presented, as we may have to do
multiple scans of the trace sizes.

5. Results

We simulated the cache management schemes
described in Sections 4.1 - 4.6 on a Pentium II-based
system with the RedHat Linux 6.2 operating system.
Traces were generated by a full-length execution of each
of the SPECint2000 benchmarks running under the
control of the Dynamo 2.0 dynamic optimization
research tool. Because Dynamo was released to us as a
black box, we were not able to implement our strategies
directly within their system, thus we used the verbose
output from Dynamo, which logs the code cache
insertions, deletions, and accesses. This log was sent

through our own trace-driven simulator, which
implemented each code cache replacement policy. A
portion of the verbose output generated by Dynamo is
shown in Figure 10. Lines 1 and 4 indicate the insertion
of a trace into the cache. The traces are numbered and
contain a tag indicating their original starting address and
trace size in bytes. Lines 2 and 5 indicate an entry into
the code cache in order to access a trace. Listed is the
original pc as well as the pc within the code cache. A
more verbose level of output would also show the exact
code within a trace.

5.1. Code cache miss rates
Figure 11 shows the miss rate of each of our code

cache management schemes for various code cache sizes,
averaged across all benchmarks. From this graph, we see
that the best performers are LRC and LRA, regardless of
cache size. Both LRC and LRA focus on temporal
locality and effectively detect changes in the
application’s working set. The worst performers, LE and
BFE, both focus on trace size rather than temporal
locality. And while the graph indicates that the frequency
of accesses is more important than trace size (LFA
performed better than LE and BFE for small cache
sizes), frequency is still not as important as temporal
locality. From Figure 11, we can therefore deduce that
the most important metric in code cache replacement is
temporal locality as expected.

Figure 12 more clearly depicts the effects of cache
size on the miss rate of each replacement scheme. Most
schemes tend to follow a similar (nearly linear) trend
with the exception of BFE and LE. While BFE performs

1.49

1.25

1.03

1.50

1.00 1.00
1.07 1.07

1.11

1.00

1.28

1.09
1.16

1

1.2

1.4

1.6

1.8

2

2.2

2.4

gz
ip vpr gc

c
mcf

cra
fty

pa
rse

r
eo

n

pe
rlb
mk ga

p
vo

rte
x

bz
ip2 tw

olf

av
era

ge

Figure 8 - Average number of elements that must be
removed when attempting to find the best-fit element.

0.39

1.73

1.36

1.21

0.04 0.05

1.30

0.79

1.78

0.19

0.64

2.36

0.99

0

0.5

1

1.5

2

2.5

gz
ip vpr gc

c
mcf

cra
fty

pa
rse

r
eo

n

pe
rlb
mk ga

p
vo

rte
x

bz
ip2 tw

olf

av
era

ge

Figure 9 – Average size difference (bytes) between best-
fit candidate and element to be inserted into code cache.

(1) Fragment 1, tag 0x4013a173, size 45
(2) Entry into F1(0x4013a173).0x401ac000
(3) Exit from F1(0x4013a173).0x401ac018
(4) Fragment 2, tag 0x080488cd, size 61
(5) Entry into F2(0x80488cd).0x401ac040
(6) Exit from F2(0x80488cd).0x401ac068

Figure 10 – Sample verbose output from Dynamo.

well in our large code caches, we see a sharp spike in
miss rates as we move to smalle r caches. This may be
because the hottest traces tend to be similar sizes, and
thus the BFE scheme continuously removes useful
traces. LE appears to be more affected by decreases in
code cache size than most of the other schemes, as its
data points appear to rise faster than all others except
BFE. This could indicate that the most useful traces in
the code cache happen to also be the largest.

While Figure 11 and Figure 12 showed results
averaged over all of the benchmarks, Figure 13 takes a
look at the performance of the six replacement schemes
for each benchmark individually, using a fixed code
cache size of 64 KB. We chose 64 KB because nearly all
replacement schemes performed well when we dealt with
a large code cache, and we felt that investigating the
schemes on a small code cache would provide more
insight. From the graph, we see several noticeable spikes
for the BFE scheme for 186.crafty, 197.parser, and
255.vortex. Yet all other schemes perform very well for
these benchmarks. One possible explanation is that for
these benchmarks, the typical working set of traces may
contain several similarly-sized elements, which

continuously replace each other in the code cache using
the BFE model. And by revisiting Figure 2, we can see
that for crafty, the offending trace size is probably at 46
bytes where we see a spike in the graph. We also notice
that while all replacement schemes perform extremely
well on 164.gzip (less than 1% miss rate), they all
consistently perform poorly on 176.gcc (all over 20%
miss rates). For these two cases, the miss rate is clearly
dominated by the relatively large or small working set,
rather than the replacement scheme. We can verify this
by revisiting Table 2, where we notice that 176.gcc
produces 44,220 traces during execution, while 164.gzip
produces only 1,542 traces.

5.2. Results Summary
As we combine our result ing miss rates with our

discussion on fragmentation and complexity of cache
management, we can make various conclusions
regarding the effectiveness of each code cache
replacement scheme. The best performers in the miss rate
category were LRA, LRC, and Flush with overall miss
rates of 2.48%, 2.88%, and 4.61% respectively (see

0%

5%

10%

15%

20%

25%

1 MB 512 KB 256 KB 128 KB 64 KB

M
is

s
R

at
e

LRA LFA LRC LE BFE Flush

Figure 11 - Miss rate of each code cache replacement

scheme for various code cache sizes.

LRA

LFA

LRC

LE

Flush

0%

5%

10%

15%

20%

1 MB 512 KB 256 KB 128 KB 64 KB

M
is

s
ra

te

LRA LFA LRC LE BFE Flush

BFE

Figure 12 – Effect of cache size on miss rate for various

replacement schemes.

0%

10%

20%

30%

40%

50%

60%

70%

80%

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erlb
mk

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

av
era

ge

LRA LFA LRC LE BFE Flush

Figure 13 - Code cache miss rates with various replacement schemes and a fixed

code cache size of 64KB.

Table 6). Yet, the LRA scheme will suffer from the
effects of code cache fragmentation, and must be
combined with either periodic flushing or code cache
defragmentation. In fact, of the cache management
strategies explored in this paper, only two did not suffer
from the problem of fragmentation. For obvious reasons,
full cache flushing avoids fragmentation. In LRC,
replacement occurs in a circular manner, thus any free
space left over after a replacement will be filled during
the subsequent replacements. In terms of overhead, the
LRC scheme must simply maintain a pointer to the next
free location in the code cache (treating the cache as a
circular buffer). The minimal code cache maintenance,
combined with a very low miss rate make the LRC
scheme a very attractive alternative to the more drastic
scheme of full code cache flushing.

6. Related Work

Several groups are currently developing dynamic
optimization systems. Dynamo is a system developed at
HP Labs that provides a software-based mechanism for
selecting and optimizing program fragments [2][4][11].
Wiggins/Redstone is a dynamic optimization and
specialization system developed at Compaq [6]. Mojo,
developed at Microsoft, is a dynamic optimizer that
focuses on x86/WinNT binaries [5]. Dynamo,
Wiggins/Redstone, and Mojo all perform optimizations
transparently on an unaltered binary at runtime, while
storing code traces in a software-based code cache.

There exists a smattering of prior work in the area of
improving the performance of dynamic optimizers.
Several researchers have proposed lightweight
optimizations that are tailored for runtime execution
[8][12][14]. Another major interest area has been in
techniques to reduce the cost of monitoring application
behavior [10][3] and then applying optimizations only to
the hottest portions of the executable [1]. There is
certainly a large body of work that discusses caching and
cache management. As stated earlier, we are restricted in
the kinds of cache management approaches we can use
because we cache variable length items and must
maintain the contiguity of the entire cached element.
Under these restrictions, the closest related work also
appears in the area of memory overlays before the
widespread use of virtual memory [7].

7. Conclusions

Code cache management in the dynamic optimization
and translation domains are a crucial, but particularly
challenging issue. The high cost of preparing traces for
insertion into a cache, combined with the fragmentation
issues involved in replacing variably-sized elements has
caused many dynamic optimization system developers to
sidestep the issue and implement either an enormously
large code cache, or an unsophisticated replacement
scheme such as full cache flushing. This paper explored
five alternatives to the full flush model, and discussed
the benefits and tradeoffs of each model. By weighing
the factors of (1) code cache miss rate, (2) fragmentation,
and (3) complexity of code cache management, we found
the Least-Recently Created (LRC) scheme to be a viable
solution that succeeds in reducing the code cache miss
rate by nearly half of that achieved by the full flush
model.

Our future work involves extending our research to
include an investigation of the effects of multithreading,
interrupts and context switches on code cache
management. In addition, we hope to investigate various
hybrid or adaptive code cache management schemes.
Finally, we hope to directly implement these code cache
management schemes in a dynamic optimizer to get
more specific details regarding the overhead of each
scheme.

Acknowledgments

We would like to thank Hewlett-Packard Laboratories
Cambridge for the use of Dynamo. We also wish to
acknowledge the independent reviewers for their
feedback on an earlier version of this paper, as well as
Tom Conte for his insight into an early version of this
research. Kim Hazelwood and Michael D. Smith are
funded by research grants from Compaq, Hewlett-
Packard, IBM, Intel, and Microsoft.

References

[1] Matthew Arnold, Stephen Fink, David Grove, Michael
Hind, and Peter F. Sweeney. “Adaptive Optimization in

scheme
fragment-

ation
additional
victims miss rate management

LRA Yes 71% 2.48% sorted list

LFA Yes 41% 9.11% sorted list

LRC None 78% 2.88% pointer

LE Yes 21% 13.91% sorted list

BFE Minimal 16% 20.77% multiple sorted lists

Flush None N/A 4.61% pointer
Table 6 - Summary of each scheme.

the Jalapeño JVM,” Proceedings of 2000 ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA'00), Minneapolis,
Minnesota, October 15-19, 2000.

[2] Vasanth Bala, Evelyn Duesterwald and Sanjeev Banerjia,
“Dynamo: A Transparent Dynamic Optimization System.”
Proceedings of the ACM SIGPLAN ’00 Conference on
Programming Language Design and Implementation.
2000, pp. 1-12.

[3] Vasanth Bala, Evelyn Duesterwald and Sanjeev Banerjia,
“Transparent Dynamic Optimization: The Design and
Implementation of Dynamo.” HP Labs Technical Report
HPL-1999-78.

[4] Derek Bruening, Evelyn Duesterwald, Saman
Amarasinghe, “Design and Implementation of a Dynamic
Optimization Framework for Windows.” Fourth ACM
Workshop on Feedback-Directed and Dynamic
Optimization, 2001.

[5] W-K. Chen, S. Lerner, R. Chaiken, D. Gillies. “Mojo: A
Dynamic Optimization System.” Third ACM Workshop
on Feedback-Directed and Dynamic Optimization, 2000,
pp. 81-90.

[6] D. Deaver, R. Gorton and N. Rubin. “Wiggins/Redstone:
An On-line Program Specializer.” Proceedings of IEEE
Hot Chips XI Conference, August 1999.

[7] Peter J. Denning. “Before Memory was Virtual.” From the
book In the Beginning: Recollections of Software
Pioneeers, IEEE Press, 1997.

[8] Kim M. Hazelwood and Thomas M. Conte. “A
Lightweight Algorithm for Dynamic If-Conversion during
Dynamic Optimization,” Proceedings of the 2000

International Conference on Parallel Architectures and
Compilation Techniques (PACT ’00) Philadelphia, PA.
October 2000, pp. 71-80.

[9] W. Hwu, et al. “The Superblock: An Effective Technique
for VLIW and Superscalar Compilation,” The Journal of
Supercomputing. Boston: Kluwer Academic Publishers,
May 1993.

[10] Matthew C. Merten, Andrew R. Trick, Christopher N.
George, John C. Gyllenhaal, and Wen-mei W. Hwu. “A
Hardware-Driven Profiling Scheme for Identifying
Program Hot Spots to Support Runtime Optimization,”
Proceedings of the 26th International Symposium on
Computer Architecture, May, 1999, pp. 136-147.

[11] Michael D. Smith, “Dynamic Optimization: An Online
Opportunity.” Keynote Speech. 2000 International
Conference on Parallel Architectures and Compilation
Techniques (PACT’00) Philadelphia, PA. October 2000.

[12] Michael D. Smith, “Overcoming the Challenges to
Feedback-Directed Optimization,” Proceedings of the
ACM Workshop on Dynamic and Adaptive Compilation
and Optimization (Dy namo ’00) Boston, MA. January
2000.

[13] SPEC CPU2000 benchmark suite. Standard Performance
Evaluation Corporation.
http://www.spec.org/osg/cpu2000/.

[14] Omri Traub, Glenn Holloway, and Michael D. Smith.
“Quality and Speed in Linear-Scan Register Allocation,”
Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, pp.
142-151, June 1998.

